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20. STOCHASTIC DIFFERENTIAL EQUATIONS

We will now move to the central subject of this course, which is the theory of stochastic
differential equations, to be abbreviated as SDE.

20.1 Setup for strong solutions.

The SDEs are generally equations for a semimartingale X of the form

dXt = Utdt + YtdBt (20.1)

whose driving processes U and Y are, at each time t • 0, assumed to be given by pre-
scribed functions of t and Xt; namely,

Ut = a(t, Xt) ^ Yt = s(t, Xt) (20.2)

This is a choice made for fundamental reasons (good dynamical theories such as New-
ton’s mechanics describe motions using local rules) as well as practical ones (anything
more complicated will hardly be generally useful).

An example of such a problem is the equation

dNt = aNtdt + bNtdBt (20.3)

that defines the dynamics of a population growth model. We already encounter the exam-
ple of the d-dimensional Bessel process,

dXt =
d ´ 1
2Xt

dt + dBt. (20.4)

Yet another example is the Langevin equation which takes the form

dXt = ´rV(Xt)dt + dBt (20.5)

This describes motion of a particle in a potential field V that, without noise, simply fol-
lows the steepest descent of V. (The Langevin equation in physics arose as a model of the
velocity of actual physical Brownian motion. In this case V is just quadratic representing
friction forces.)

We may at times consider a generalization of (20.1–20.2) to a family of SDEs for a vec-
tor valued process X = (X(1), . . . , X(d)) depending on m-dimensional standard Brown-
ian motion B = (B(1), . . . , B(m) as

dX(i)
t = ai(t, Xt)dt +

mÿ

j=1

sij(t, Xt)dB(j)
t (20.6)

To make this notationally close to the one-dimensional case, we adopt a vector notation
and write this as

dXt = a(t, Xt)dt + s(t, Xt) ¨ dBt (20.7)
where “¨” denotes the Euclidean dot product, a is assumed Rd-valued and s is assumed
d ˆ m-matrix valued.

In order to treat the above concepts mathematically, we now define a term that de-
scribes the context in which we will work with (20.7).
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Definition 20.1 (Standard setting for SDE) A standard setting for (strong form of) SDE

(20.7) for Rd
-valued process X consists of a four-tuple of objects

⇣
(W,F , P), tFtut•0, tBt : t • 0u, X0

⌘
(20.8)

where (W,F , P) is a probability space,

(1) B = tBt : t • 0u is an m-dimensional standard Brownian motion on (W,F , P),
(2) tFtut•0 is a Brownian filtration on (W,F , P) such that

F0 contains all P-null sets (20.9)

(3) X0 is an Rd
-valued random variable on (W,F , P), to be called initial value, which

is assumed F0-measurable (and thus independent of B),

and a pair of functions

a : [0, 8) ˆ Rd
Ñ Rd

^ s : [0, 8) ˆ Rm
Ñ Rdm (20.10)

which are assumed to be Borel measurable.

With this in hand, we can define what it means to solve (20.7).

Definition 20.2 (Strong solution) Assume a standard setting for SDE (20.7) with no-

tations as in Definition 20.1. A strong solution to (20.7) is then a stochastic process

tXt : t • 0u defined on the underlying probability space (W,F , P) such that

(1) X is continuous and adapted to tFtut•0,

(2) for all t • 0,

ª t

0
| a(s, Xs)|ds † 8 ^

ª t

0
| s(s, Xs)|

2ds † 8 a.s. (20.11)

(3) for all t • 0,

Xt = X0 +
ª t

0
a(s, Xs)ds +

ª t

0
s(s, Xs) ¨ dBs a.s. (20.12)

where X0 on the right denotes the initial value.

Note that (1) along with Definition 20.1 ensure that t fiÑ a(t, Xt) and t fiÑ s(t, Xt)
are adapted and jointly measurable processes. The conditions (20.11) in (2), where we
lighten the notation by writing | ¨ | for Euclidean norms if X is vector valued, then guar-
antee that the integrals in (20.12) are meaningful and finite a.s. We write a.s. in (20.12)
to reflect on the stochastic integral being defined only up to a null set. Thanks to (20.9)
the integrals admit continuous adapted versions for which the equality in (20.12) then
holds for all t • 0 simultaneously on a set of full measure.

20.2 Finding a strong solution.

There is no good reason for calling the solution “strong” at this point except that we will
later consider the concept of a weak solution — where, reader beware, “weak” means
something rather different from what it designates in standard ODE/PDE theory. To
elucidate the difference nonetheless, let us “solve” the equations (20.3) and (20.4).
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Starting with the population growth equation (20.3), assuming that N is a solution
with N0 ° 0, the Itô formula gives

d log Nt =
1

Nt
dNt ´

1
2N2

t
dxNyt

=
1

Nt

�
aNtdt + bNtdBt) ´

1
2N2

t
b2dt

=
�
a ´

1
2 b2�dt + bdBt

(20.13)

The right-hand side is the differential of the process t fiÑ (a ´
1
2 b2)t + bBt. Exponentia-

tion thus gives
Nt = N0 e(a´b2/2)t+bBt (20.14)

While the above steps were not completely justified (for instance, we never worried
about Nt hitting zero, which is a singularity of the logarithm) we can now forget all of it
and check, using the Itô formula, that (20.14) is indeed a strong solution to (20.3).

Concerning the Bessel SDE (20.4), here we recall that, for d natural, the d-dimensional
Bessel process was discovered as the radial process of d-dimensional standard Brownian
motion. This suggests that we “solve” (20.4) by putting

Xt := |X0 + Bt| (20.15)

for | ¨ | denoting the Euclidean norm in Rd. However, a closer look shows that this is not
what we aimed for. Indeed, the Itô formula yields

dXt =
d ´ 1
2Xt

+ d rBt (20.16)

where

rBt :=
dÿ

i=1

ª t

0

1
Xs

B(i)
s dB(i)

s (20.17)

While, as noted earlier (thanks to Theorem 14.6), rB is a standard Brownian motion it is
not the one in (20.15) — after all, that Brownian motion is d-dimensional!

It thus appears that we did solve the Bessel SDE, but not using the prescribed Brow-
nian motion. Instead, we allowed the structure of the “standard setting” for the SDE to
become part of our solution and not something that is fixed beforehand. As it turns out,
this is exactly what will mean that the solution (20.15) to SDE (20.4) is weak.

A natural question to answer now is under what general conditions on the standard
setting and, in particular, the coefficients in the SDE, a strong solution exists. The fol-
lowing theorem, due to K. Itô in early 1940s, answers this as follows:

Theorem 20.3 Assume the standard setting with initial data obeying X0 P L2 and coefficients
such that there is K P (0, 8) for which

@t • 0 @x, y P Rd :
ˇ̌
a(t, x) ´ a(t, y)

ˇ̌
+

ˇ̌
s(t, x) ´ s(t, y)

ˇ̌
§ K|x ´ y| (20.18)

and
@t • 0 :

ˇ̌
a(t, 0)

ˇ̌
+

ˇ̌
s(t, 0)

ˇ̌
§ K (20.19)
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hold true. Then a strong solution to SDE (20.7) with initial data X0 exists.

We remark that the above applies equally well for vector valued processes; on thus
needs to replace |a(t, x) ´ a(t, y)| and |a(t, 0)| by the Euclidean norm of the correspond-
ing dimension and |s(t, x) ´ s(t, y)|, resp., |s(t, 0)| by the matrix Euclidean norm de-
fined, for any d ˆ m-matrix S by }S}2 := [Tr(SST)]1/2 = [

∞
i,j S2

ij]
1/2.

20.3 Proof of Theorem 20.3.

As usual in the theory of ordinary differential equations, we will construct a solution as
the limit of so called Picard-Lindelöf iterations. These are processes tX(n)

un•0 defined by
setting, for all t • 0,

X(0)
t := X0 (20.20)

and, for each n • 0,

X(n+1)
t := X0 +

ª t

0
a(s, X(n)

s )ds +
ª t

0
s(s, X(n)

s ) ¨ dBs (20.21)

In order to make sure that the integrals exist and the construction can proceed induc-
tively for all n • 0, we need to prove:

Lemma 20.4 Assume a standard setting for the SDE (20.7). Then for any process tYt : t • 0u

on (W,F , P) which is continuous and adapted, the (vector valued) processes ta(t, Yt) : t • 0u

and ts(t, Yt) : t • 0u are jointly measurable and adapted. If, in addition,

@t • 0 : sup
s§t

E
�
|Ys|

2�
† 8 (20.22)

and (20.18–20.19) hold, then

@t • 0 : E
ª t

0

ˇ̌
a(s, Ys)

ˇ̌
ds † 8 ^ E

ª t

0

ˇ̌
s(s, Ys)

ˇ̌2ds † 8 (20.23)

and, for a suitable version of the stochastic integral,

Zt :=
ª t

0
a(s, Ys)ds +

ª t

0
s(s, Ys) ¨ dBs (20.24)

defines a continuous, adapted process that obeys

@t • 0 : sup
s§t

E
�
|Zs|

2�
† 8 (20.25)

Here, throughout, we wrote | ¨ | for Euclidean norms of appropriate dimension.

Proof. A continuous adapted process is automatically jointly measurable. The first part
of the claim then follows by standard facts about composition of measurable functions.
For the second part note that, under (20.18–20.19), the triangle inequality yields

@t • 0 @x P Rd :
ˇ̌
a(t, x)

ˇ̌
+

ˇ̌
s(t, x)

ˇ̌
§ K

⇥
1 + |x|

⇤
(20.26)
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To get the bounds (20.23) we invoke (20.22) with the help of Fubini-Tonelli and, in the
first part, Cauchy-Schwarz. Using that (a + b)2

§ 2a2 + 2b2, the latter also shows

E
✓

sup
u§t

ˇ̌
ˇ
ª u

0
a(s, Ys)ds

ˇ̌
ˇ
2
◆

§ tE
✓ª t

0

ˇ̌
a(s, Ys)

ˇ̌2ds
◆

§ 2t2K2 sup
s§t

⇥
1 + E(|Ys|

2)
⇤

(20.27)

and, using Doob’s L2-martingale inequality for the stochastic integral on the right of
(20.24) and then Itô isometry, we similarly get

E
✓

sup
u§t

ˇ̌
ˇ
ª u

0
s(s, Ys) ¨ dBs

ˇ̌
ˇ
2
◆

Doob
§ 4E

✓ˇ̌
ˇ
ª t

0
s(s, Ys) ¨ dBs

ˇ̌
ˇ
2
◆

Itô
= 4E

ª t

0

ˇ̌
s(s, Ys)

ˇ̌2ds § 8tK2 sup
s§t

⇥
1 + E(|Ys|

2)
⇤

(20.28)

Using that (a + b)2
§ 2a2 + 2b2, (20.22) thus implies (20.25). ⇤

Using Lemma 20.4 along with the construction of the iterates, we inductively check
that, since X(0) satisfies the assumptions of continuity, adaptedness and (20.22), so does
the process X(n) for all n • 0. Our next goal is to control the convergence of X(n)

t
as n Ñ 8. We will do this using (local) supremum norms, as our aim is to prove uniform
convergence a.s. to ensure that the limit is continuous, and under second moments, as
this is what the above is set up for. The key estimate comes in:

Lemma 20.5 For each t • 0 and n • 1 set

gn(t) := E
⇣

sup
s§t

ˇ̌
X(n)

s ´ X(n´1)
s

ˇ̌2⌘ (20.29)

Then gn is continuous and, for K as in (20.22),

gn+1(t) § 2K2(t + 4)
ª t

0
gn(s)ds (20.30)

holds for all all t • 0 and all n • 0 where (for n := 0) we set

g0(t) := 4K2(t + 4)
⇥
1 + E(X2

0)
⇤

(20.31)

Proof. The continuity of gn (which will guarantee that the integral in (20.30) is meaning-
ful) follows from the continuity and monotonicity of the supremum in t via the Mono-
tone Convergence Theorem. For the main part of the claim, note that for n • 1,

X(n+1)
t ´ X(n)

t = At + Mt (20.32)

where

At :=
ª t

0

⇥
a(s, X(n)

s ) ´ a(s, X(n´1)
s )

⇤
ds (20.33)

and

Mt :=
ª t

0

⇥
s(s, X(n)

s ) ´ s(s, X(n´1)
s )

⇤
¨ dBs (20.34)
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Using the inequality (a + b)2
§ 2a2 + 2b2 we get

sup
s§t

ˇ̌
X(n)

t ´ X(n´1)
t

ˇ̌2
§ 2 sup

s§t
A2

s + 2 sup
s§t

M2
s (20.35)

Similarly as in (20.27), for the first term on the right we employ the Cauchy-Schwarz
inequality along with the bound (20.22) to obtain

E
⇥
sup
s§t

A2
s
⇤

§ tE
ª t

0

ˇ̌
a(s, X(n)

s ) ´ a(s, X(n´1)
s )

ˇ̌2ds

§ K2t E
ª t

0

ˇ̌
X(n)

s ´ X(n´1)
s

ˇ̌2ds § K2t
ª t

0
gn(s)ds

(20.36)

where Fubini-Tonelli’s theorem and the definition of gn were used in the last step. For
second term on the right of (20.35), using that M is a continuous martingale, Doob’s
L2-inequality and Itô isometry show

E
⇥
sup
s§t

M2
s
⇤

§ 4E
⇥
M2

t
⇤
= 4E

ª t

0

ˇ̌
a(s, X(n)

s ) ´ a(s, X(n´1)
s )

ˇ̌2ds

§ 4K2E
ª t

0

ˇ̌
X(n)

s ´ X(n´1)
s

ˇ̌2ds § 4K2
ª t

0
gn(s)ds

(20.37)

Putting (20.36–20.37) together, the claim (20.30) for n • 1 follows via (20.35).
In order to prove the inequality (20.30) for n := 0, we note that in this case (20.32)

still holds but with the argument of the integrals (20.33–20.34) using the convention
a(s, X(´1)) := and s(s, x´1) := 0. Instead of the Lipschitz bounds (20.18) we instead call
upon (20.26) and the fact that [1 = |x|]2 § 2[1 + |x|

2] to effectively produce g0(t) on the
right-hand sides of (20.36–20.37). ⇤

We are now ready to give:
Proof of Theorem 20.3. Denoting C(t) := 2K2(t + 4) and observing that t fiÑ C(t) is non-
decreasing, iterations of (20.30) show

@s § t : gn(s) § 2
C(t)nsn

n!
⇥
1 + E(X2

0)
⇤

(20.38)

Chebyshev’s inequality now shows

P
✓

sup
s§t

ˇ̌
X(n)

s ´ X(n´1)
s

ˇ̌
° 2´n

◆
§ 4ngn(t) §

[4C(t)t]n

n!
⇥
1 + E(X2

0)
⇤

(20.39)

and the fact that the right-hand side is summable for each integer t • 1 combined with
Borel-Cantelli lemma gives

P

 
@t • 0 :

ÿ

n•1

sup
s§t

ˇ̌
X(n)

s ´ X(n´1)
s

ˇ̌
† 8

!
= 1 (20.40)

It follows that the infinite series in

Xt := X0 +
ÿ

n•1

⇥
X(n)

s ´ X(n´1)
s

⇤
(20.41)
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converges locally uniformly a.s. and so X is continuous a.s.
Redefining Xt to equal X0 on the complement of the event in (20.40) produces a contin-

uous process which is adapted thanks to (20.9) and equals the locally-uniform pointwise
limit of X(n)

t as n Ñ 8. In addition, we have

@t • 0 : E
⇣

sup
s§t

ˇ̌
X(n)

s ´ Xs
ˇ̌2⌘

›Ñ
nÑ8 0, (20.42)

which follows by noting that, with the help of Fatou’s lemma and above locally uniform
pointwise convergence, the square root of the expectation is dominated by

∞
m°n gm(t)1/2

and that tgm(t)1/2
um•1 is still summable.

It remains to check that X is indeed a desired strong solution to (20.7). We have al-
ready checked that X is adapted and continuous. Using (20.27) — and the fact that
each X(n) obeys the following bound — we get

@t • 0 : sup
s§t

E(|Xs|
2) † 8 (20.43)

and so, by Lemma 20.4, the stochastic integrals in (20.11) are in L2. In order to show
that X satisfies the integral form (20.12) of the SDE, we note one more time that estimates
of the kind (20.36–20.37) show

ª t

0
a(s, X(n)

s )ds L2
›Ñ
nÑ8

ª t

0
a(s, Xs)ds (20.44)

and ª t

0
s(s, X(n)

s )dBs
L2

›Ñ
nÑ8

ª t

0
s(s, Xs)dBs (20.45)

This now implies (20.12) by taking the L2-limit on the right-hand side of (20.21) and
pointwise limit on the left-hand side. ⇤

We have constructed a strong solution to a robust class of SDEs. Uniqueness of this
solution as well as other ramifications will be addressed in the next lecture.

Further reading: Karatzas-Shreve, Sections 5.1-5.2
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