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2. KOLMOGOROV EXTENSION THEOREM

We will now address the following question: Do the homogeneous Poisson process and
Brownian motion exist? And if so, in what sense are they unique? This will turn out to be
an application of an “extension theorem” due to A.N. Kolmogorov. Credit is sometimes
given also to P.J. Daniell for his development of infinite-dimensional integration theory.

2.1 Finite-dimensional distributions.

We start by recalling the notion of a product measure space: Given two measure spaces
(X , S) and (X 1, S1), their product is a measure space (X ˆ X 1, S b S1) where

S b S1 := s
⇣ 

A ˆ A1 : A P S, A1
P S1(

⌘
(2.1)

Here s(A) denotes the least s-algebra containing the collection of sets A. As is readily
checked, the formation of product spaces is an associative operation. This allows us to
define powers Sbn inductively as S b Sb(n´1). (A direct definition is possible as well.)

A stochastic process tXt : t P Tu gives us access to the law of a single variable Xt, but
also the joint law of Xt and Xs, etc. This naturally leads to:

Definition 2.1 Let (X , S) be a measure space and let tXt : t P Tu be an X -valued

stochastic process. The measures indexed by n • 1 and (t1, . . . , tn) P T and defined by

@A P Sbn : µ(t1,...,tn)(A) := P
�
(Xt1 , . . . , Xtn) P A

�
(2.2)

form a family of finite-dimensional distributions of X.

A moment’s thought reveals that not every family of probability measures on prod-
ucts of (X , S) indexed by elements of T can arise from a stochastic process. Indeed, as
is readily checked, (2.2) obeys both (1) and (2) in:

Definition 2.2 (Consistent family of measures) Let (X , S) be a measure space and

let Sn denote the set of all permutations of t1, . . . , nu. A family

 
µt : t = (t1, . . . , tn) P Tn, n • 1

(
, (2.3)

where µ(t1,...,tn) is a probability measure on (X n, Sbn), is said to be consistent if

(1) @n • 1 @s P Sn @t1, . . . , tn P T @A1, . . . , An P S :

µ(ts(1),...,ts(n))

�
As(1) ˆ ¨ ¨ ¨ ˆ As(n)

�
= µ(t1,...,tn)(A1 ˆ ¨ ¨ ¨ ˆ An) (2.4)

(2) @n • 1 @t1, . . . , tn P T @A1, . . . , An´1 P S :

µ(t1,...,tn)(A1 ˆ ¨ ¨ ¨ ˆ An´1 ˆ X ) = µ(t1,...,tn´1)(A1 ˆ ¨ ¨ ¨ ˆ An´1) (2.5)

Consistency is thus necessary for a family of measures to be the finite-dimensional
distributions of process. A deep, and perhaps surprising, fact is that consistency is also
sufficient for the existence of a process, provided the space (X , S) is “nice” — meaning,
conforming to the following definition:
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Definition 2.3 (Standard Borel space) A standard Borel space is a measure space (X , S)
where X is a completely-metrizable second-countable topological space and S is the s-

algebra of Borel sets — i.e., the smallest s-algebra containing all open sets.

We remark that, while the above definition talks about topological spaces, its require-
ments simply state that, for a suitable metric, X is a complete and separable metric
space. Besides R or Rd endowed with the Euclidean norm, the class of standard Borel
spaces thus includes all finite and countable sets endowed with the discrete metric, the
Banach space C([0, 1]) of continuous functions on [0, 1] endowed with the supremum
norm, the Banach spaces Lp(R) and `p(N) for all p P [1, 8), the set of Borel probability
measures on R endowed with the topology of weak convergence, etc.

From a certain perspective, Definition 2.3 may appear too restrictive. Indeed, the cele-
brated Kuratowski Theorem states that any uncountable standard Borel space (X , S) is
bi-measurably isomorphic to the interval [0, 1] endowed with the Borel sets of Euclidean
topology. On the other hand, since the isomorphism is only required to be bi-measurable
(which is less than homeomorphic), the class of standard Borel spaces is actually so rich
that we rarely need to worry about anything else.

We are ready for the main result of this lecture:

Theorem 2.4 (Kolmogorov Extension Theorem) Let (X , S) be a standard Borel space and
let T be a non-empty set. Then for any consistent family

 
µt : t = (t1, . . . , tn) P Tn, n • 1

(
(2.6)

where µ(t1,...,tn) is a measure on (X n, Sbn), there exists a probability space (W,F , P) and an
X -valued stochastic process tXt : t P Tu on (W,F , P) such that

@n • 1 @t1, . . . , tn P T @A P Sbn : P
�
(Xt1 , . . . , Xtn) P A

�
= µ(t1,...,tn)(A) (2.7)

In short, the family (2.6) are the finite-dimensional distributions of X.

Before we delve into the proof, let us remark that this theorem, along with the problem
of disintegration of measure, are the main reasons why we sometimes have to assume
an underlying topological structure of our probability space. There have in fact been
attempts (e.g., by D. Blackwell) to cast the foundations of probability in terms of topo-
logical spaces. However, this turns out to be an overkill: The additional structure is often
needed just tangentially and putting it into the foundations carries a lot of unnecessary
technical overhead that can, for the most part, be avoided.

2.2 Proof of Kolmogorov Extension Theorem.

As is not hard to guess, the proof reduces to a measure-extension problem. For this we
recall that an algebra on W is a collection of subsets of W containing H and W which is
closed under finite unions and complements. We aim to invoke the following standard
measure-extension tool:

Theorem 2.5 (Hahn-Kolmogorov) Let A be an algebra of sets on W and let µ : A Ñ [0, 8]
be a set function that is
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(1) finitely additive, meaning

@A, B P A : A X B = H ñ µ(A Y B) = µ(A) + µ(B) (2.8)

(2) countably subadditive, meaning

@tAnun•1 Ñ A :
§

n•1

An P A ñ µ
⇣ §

n•1

An

⌘
§

ÿ

n•1

µ(An) (2.9)

Then there exists a measure µ̄ on (W, s(A)) such that

@A P A : µ̄(A) = µ(A). (2.10)

Equipped with this result, we are ready to start constructing the underlying probabil-
ity space. For the sample space we use the set

W := X T :=
 

functions T Ñ X
(

. (2.11)

This set can naturally be endowed with the product s-algebra

SbT := s

✓!°

tPT
At : tAt : t P Tu Ñ S ^ tt P T : At ‰ X u is finite

)◆
(2.12)

We will also need the notation for events that depend only on a given (typically finite)
number of coordinates. Given any S Ñ T, for this we let

FS := s

✓!°

tPT
At : tAt : t P Tu Ñ S ^ tt P T : At ‰ X u Ñ S

)◆
(2.13)

Let pS : W Ñ X S be the projection on the coordinates in S. We now observe:

Lemma 2.6 Using the above notation,

A :=
§

SÑT
finite

FS (2.14)

is an algebra on W. Moreover, given a consistent family (2.6), for any A P A and any S =
tt1, . . . , tnu such that A P FS, the expression

P(A) := µ(t1,...,tn)

�
pS(A)

�
(2.15)

does not depend on S (as long as A P FS) and thus defines a map P : A Ñ [0, 1]. This map is
finitely additive on A.

Proof. That A is an algebra follows from the fact that A P FS and B P FS1 imply
A, B P FSYS1 and noting that FSYS1 is even a s-algebra. The independence of (2.15)
on S is a consequence of the consistency. The finite additivity is again proved by noting
that µ(t1,...,tn) is even countably additive on pS(FS). ⇤

As is directly checked by comparing (2.14) and (2.12),

F = s(A). (2.16)
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Motivated by Theorem 2.5, our task is to prove that P is countably subadditive on A. It
is here where we will make use of the standard Borel property of (X , S). There are two
facts we will need; these come in the next two lemmas:

Lemma 2.7 (Inner regularity) Let µ be a finite measure on a standard Borel space (X , S).
Then

@A P S : µ(A) =
 

µ(C) : C Ñ A compact
(

(2.17)

In short, µ is inner regular.

Lemma 2.8 Let (X , S) be a standard Borel space. Then so is (X n, Sbn) for all n • 1.

Leaving the proof of these lemmas to homework, we now use these to check:

Proposition 2.9 Using above notation,

@tBnun•1 P A
N : Bn Ó H ñ P(Bn) Ñ 0 (2.18)

Proof. We will proceed by proving the contrapositive, so let us assume that tBnun•1 Ñ A

is a non-increasing sequence such that

e := inf
n•1

P(Bn) ° 0 (2.19)

The argument is fairly simple: We use the standard Borel property and inner regularity
to find, for each n • 1, a set Cn Ñ Bn such that

ìn
k=1 Ck has probability very close to that

of
ìn

k=1 Bk and is thus non-empty. It follows that
ìn

k=1 Ck contains a “point” x(n) P X T

for each n • 1. Moreover, Cn will be compact in the coordinates that Bn depends on
which will permit us to conclude that tx(n)un•1 contains a subsequence whose every
coordinate converges. The limit point then lies in

ì
n•1 Cn and thus in

ì
n•1 Bn.

The actual argument is slightly more complicated due the fact that we need to move
between sets in X T and their finite dimensional projections. Note first that, since each Bn
belongs to FS for some finite S Ñ T, repeating terms if necessary we may assume that
for a sequence ttnun•1 Ñ T,

@n • 1 : Bn P FSn (2.20)

holds with Sn := tt1, . . . , tnu. Next note that µ(t1,...,tn) is a measure on (X n, Sbn) which
by Lemma 2.8 is standard Borel. Lemma 2.7 then ensures the existence of a compact set
C1

n Ñ pSn(Bn) such that

µ(t1,...,tn)(pSn(Bn)r C1
n) † e2´n´1 (2.21)

Writing Cn := p´1
Sn

(C1
n), which we note belongs to FSn , we thus get

@n • 1 DCn P FSn : Cn Ñ Bn ^ pSn(Cn) is compact ^ P(Bn r Cn) † e2´n´1. (2.22)

Since, for each n • 1,

P
⇣ n£

k=1

Ck

⌘
• P

⇣ n£

k=1

Bk

⌘
´

nÿ

k=1

P(Bk r Ck) • e ´

nÿ

k=1

e2´k´1
•

e

2
° 0 (2.23)
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we get that
ìn

k=1 Cn ‰ H for each n • 1. In light of Cn P FSn , implies existence of
tx(n)k u1§k§n such that

@n • 1 : (x(n)1 , . . . , x(n)n ) P pSn

⇣ n£

k=1

Ck

⌘
(2.24)

Thanks to the product structure, for each m • 1, the sequence t(x(n)1 , . . . , x(n)m )un•m be-
longs to the compact set

ìm
k=1 pSm(Ck). It follows that this sequence contains a subse-

quence that converges in X n. As this can be done for all m • 1, the Cantor diagonal
argument thus produces a subsequence tnjuj•1 such that

@k • 1 : x̄tk := lim
jÑ8

x(nj)
k exists (2.25)

with, again by compactness,

@n • 1 : (x̄t1 , . . . , x̄tn) P pSn

⇣ n£

k=1

Ck

⌘
. (2.26)

Define xt as above for t P ttnun•1 and by x̄t := x̄t1 else. The “point” x̄ = tx̄t : t P Tu then
obeys x̄ P

ìn
k•1 Ck for all n • 1 and thus x̄ P

ì
n•1 Cn. As the latter is a subset of

ì
n•1 Bn,

we conclude that
ì

n•1 Bn ‰ H, thus proving the contrapositive of (2.18). ⇤
We now note:

Lemma 2.10 Let P be a countably additive set function on an algebra A. Assuming that (2.18)
holds, then P is also countably additive on A.

Proof. Let tAnun•1 Ñ A be disjoint (meaning that An X Am ‰ H implies m = n) and such
that

î
n•1 An P A. Writing Bn :=

ì
k°n Ak, we then get Bn P A and

§

n•1

An = Bn Y

n§

k=1

Ak (2.27)

This is a finite disjoint union of sets in A and so

P
⇣ §

n•1

An

⌘
= P(Bn) +

nÿ

k=1

P(Ak) (2.28)

The first term tends to zero as n Ñ 8 by (2.18). Taking n Ñ 8 we thus get

P
⇣ §

n•1

An

⌘
=

ÿ

k•1

P(Ak) (2.29)

which is the desired countable additivity. ⇤
We are now ready to conclude:

Proof of Theorem 2.4. In light of the above discussion, the Hahn-Kolmogorov Theorem
show that P extends to a measure on (W,F ), where W := X T and F := SbT. For
each w = twt : t P Tu P W, set

Xt(w) := wt. (2.30)

Preliminary version (subject to change anytime!) Typeset: January 10, 2024



MATH 275D notes 10

The product structure of F ensures that Xt is F/S-measurable and so tXt : t P Tu is a
stochastic process on (W,F , P). The condition (2.7) then follows from (2.15). ⇤

While the Kolmogorov Extension Theorem is a very elegant tool, it is possible to avoid
in many cases. This is because the key conclusion (2.18) can be verified by other means
with the help of the particular structure of the finite-dimensional distribution. In par-
ticular, this will work for all product (probability) measures (regardless of the index set)
and thus all independent random variables, but also measures with a specific depen-
dency structure such as Markov chains. All that is needed is that the finite-dimensional
measures are not just consistent but also disintegrate with respect to one another.

With this being said, we warn the reader that some conditions on the underlying
measure space cannot be avoided in general. Indeed, E.S. Andersen and B. Jessen in
“On the introduction of measures in infinite product spaces” (Danske Vid. Selsk. Mat.-
Fys. Medd., vol.25, no.4 (1948), 8pp) constructed an example of a consistent sequence
of probability measures on finite product spaces with no extension to the infinite prod-
uct space. However, these issues have little bearing on “practical” questions involving
probability where we invariably deal with spaces that are standard Borel.

2.3 Uniqueness.

With the tools to construct stochastic processes available, the next question is that of
uniqueness. For the measure extension problem, this will follow from Dynkin’s p/l-
Theorem. Recall the following definitions:

Definition 2.11 Given a set W ‰ H, a collection P of subsets of W is a p-system if

@A, B P P : A X B P P (2.31)

A collection L of subsets of W is a l-system, if

(1) H, W P L

(2) @A, B P L : A Ñ B ñ B r A P L

(3) @tAnun•1 Ñ L @A P L : An Ò A ñ A P L

Every s-algebra is a l-system but there are l-systems that are not s-algebras (in gen-
eral). The example relevant for us comes in:

Lemma 2.12 Let µ and n be two probability measures on (W,F ). Then

L :=
 

A P F : µ(A) = n(A)
(

(2.32)

is a l-system.

Proof. This follows from the additivity and continuity of measure along with the fact that
both measures have equal, and finite, total mass. ⇤

The previous lemma shows that l-systems naturally appear when studying equality
of two measures. The vehicle that provides the needed abstract-nonsense part of the
argument is then:
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Theorem 2.13 (Dynkin’s p/l-Theorem) Given a non-emptyset W, let L be a l-system on W
and let P be a p-system on W. Then

P Ñ L ñ s(P) Ñ L (2.33)

Proof. Let P be a p-system contained in a l-system L. We start by reducing L to

m(P) :=
£ 

L
1 : l-system ^ P Ñ L

1( (2.34)

Indeed, the intersection of any number of l-systems is a l-system, and so m(P) is a l-
system containing P . We will prove that m(P) is also a p-system and thus a s-algebra.
This shows s(P) = m(P) Ñ L, proving the claim.

For any A Ñ W, denote

GA :=
 

B P m(P) : A X B P m(P)
(

. (2.35)

Using that m(P) is a l-system, we readily verify that so is GA, regardless of A. Now
observe that P Ñ m(P) along with P being a p-system imply P Ñ GA for each A P P .
The minimality of m(P) then gives m(P) Ñ GA for each A P P . This translates into
P Ñ GB for each B P m(P) and the minimality of m(P) then yields m(P) Ñ GB for each
B P m(P). It follows that m(P) is a p-system, as desired. ⇤

Using Theorem 2.13 we get:

Corollary 2.14 The extension on P : A Ñ [0, 1] from (2.15) to SbT is unique.

Proof. The collection of sets A from (2.14) is an algebra and so it is a p-system. If P
and P1 are two s-additive extensions of P to s(A), then they are equal on a l-system
containing A. By (2.33) they are thus equal on SbT = s(A). ⇤

It is worth noting that, while the measure defined by finite-dimensional distributions
on the infinite product space is unique, the induced stochastic process tXt : t P Tu is
not in general. An obvious obstacle for uniqueness is the fact that, in probability, we
do not make a distinction between different realizations of a random variable, as long
as these induce the same distribution. A less obvious obstacle comes in the following
example: Consider a real-valued stochastic process X = tXt : t P [0, 1]u and let U be a
Uniform([0, 1]) and independent of X. Set

Yt :=

#
Xt + 1, if t = U,
Xt, else.

(2.36)

As is then checked readily from Fubini-Tonelli, Yt = Xt a.s. for each t P [0, 1]. It follows
that Y has the same finite dimensional distributions as X, and thus induces the same
measure on (R[0,1],B(R)b[0,1]). Yet the two processes have clearly distinct sample paths
— for instance, if X continuous then Y is not.

Examples of this sort do not (and cannot) arise unless the index space T is uncountable
which is why we have been able to avoid dealing with them until now. But 275D is
primarily concerned with continuum index sets and so the uniqueness issue deserves a
closer look. This is what we will do in the next lecture.
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