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19. OTHER PDES: POISSON, HELMHOTZ, HEAT EQUATION

While we focused on the Laplace equation above, similar conclusions can be drawn for a
large class of elliptic and parabolic PDEs. In this supplement to the previous lecture, we
give an overview of some of the important cases. We will not generally try to construct
solutions probabilistically; instead, we will mainly contend ourselves with results that
represent solutions as expectations of Brownian functionals. We only present main results
leaving the proofs to homework.

19.1 Elliptic problems.

A natural generalization of the Laplace equation Du = 0 — which itself arises in physics
as the equation for the electrostatic potential in D with prescribed values on BD — is the
Poisson equation

Du = r (19.1)

This equation governs the electrostatic potential in the situations when electric charge of
(signed) density r is present inside D. Here we get:

Theorem 19.1 (Poisson equation) Let D Ñ Rd be non-empty and open and let r : D Ñ R

be bounded and measurable. Assume that

@x P D : Px(tD † 8) = 1 ^ Ex
ª tD

0

ˇ̌
r(Bs)

ˇ̌
ds † 8 (19.2)

Then any u P C2(D) X C(D) such that

@x P D : Du(x) = r(x) (19.3)

obeys

@x P D : u(x) = Ex�u(BtD)
�

´
1
2

Ex
ª tD

0
r(Bs)ds (19.4)

The proof is a fairly straightforward exercise in martingale theory. The factor “1/2” in
(19.4) arises from the similar factor in Itô formula. Note that condition (19.2) holds when

r P L8(D) ^ @x P D : ExtD † 8 (19.5)

Under this condition one can check that the function defined by the right-hand side of
(19.4) for any prescribed (bounded measurable) boundary values of u solves (19.3) at all
Lebesgue-differentiability points of r (which is a set of full Lebesgue measure). Since $
is assumed bounded, once we know that

@x P BD : lim
zÑx
zPD

EztD = 0, (19.6)

the continuity of u at the boundary is handled just as for the Laplace equation. For D
bounded with all boundary points regular, the condition (19.6) is checked from the fact
that tt´z+D : z P Du is uniformly integrable under P0.

Another way to generalize the Laplace equation is by adding a linear term in u. We
treat the inhomogeneous case which subsumes the Poisson equation as well:
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Theorem 19.2 (Helmholtz equation) Let D Ñ Rd be non-empty and open and, given k P R

and a bounded measurable r : D Ñ R, assume u P C2(D) X C(D) obeys

@x P D : 1
2 Du(x) + ku(x) = r(x) (19.7)

Assuming @x P D : ExtD † 8 and, when k ° 0, also

@x P D : ExektD † 8 (19.8)

we then have
@x P D : u(x) = Ex� u(BtD)e

ktD
�

´ Ex
ª tD

0
r(Bs)ds (19.9)

The Helmholtz equation appears in PDE literature when trying to solve the wave equa-
tion by separation of variables, i.e., using functions that factor into a product of a time-
dependent term and a space-dependent term. For k § 0, the above may be interpreted
using Brownian motion that is killed or annihilated — which means “moved to a special
‘cemetery’ state” — at an independent exponential time with parameter ´k. Note that
this is different from the Brownian motion tBt^tD : t • 0u which is stopped, or absorbed,
at the boundary.

The representation of the kind (19.9) applies even to the situation when k is allowed
to depend on the spatial variable. This includes the following problem.

Lemma 19.3 (Eigenfunction representation) Let V : Rd
Ñ R be measurable, bounded from

below and let u P C2(Rd) be a function such that, for some l P R,

@x P Rd : ´
1
2 Du(x) + V(x)u(x) = lu(x) (19.10)

Then for any t • 0,

@x P D : u(x) = Ex
✓

u(Bt) exp
!ª t

0
[l ´ V(Bs)]ds

)◆
(19.11)

In order to explain the title of the lemma, a function satisfying (19.10) is called an eigen-
function of the operator ´

1
2 D + V(¨) with eigenvalue l. (The formal concept requires also

that u be an element of a suitable Hilbert space such as L2(Rd).) Operators of this form
play a very important role in quantum mechanics and the representation (19.11) can
sometimes be useful for the analysis of their eigenfunctions and eigenvalues.

19.2 Parabolic problems.

Another equation that can be represented probabilistically is the heat equation
Bu
Bt

=
1
2

Du (19.12)

We will treat the inhomogeneous case as that poses no extra difficulty:

Theorem 19.4 (heat equation, Cauchy problem) Let D Ñ Rd be non-empty bounded and
open. Let $ : D Ñ R be bounded measurable with

@x P D @t • 0 : Ex
ª t^tD

0

ˇ̌
r(Bs)

ˇ̌
ds † 8 (19.13)
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Assume u : [0, 8) ˆ D Ñ R is bounded continuous, of type C1,2((0, 8) ˆ D), and such that

@t ° 0 @x P D :
Bu
Bt

(t, x) = 1
2 Du(t, x) + r(x) (19.14)

and
@x P BD @t • 0 : u(t, x) = 0 (19.15)

Then

u(t, x) = Ex
⇣

u(0, Bt)1ttD°tu
⌘
+ Ex

⇣ª t^tD

0
r(Bs)ds

⌘
(19.16)

The result becomes particularly clean when D = Rd, r = 0 and u is thus a bounded
solution to the Cauchy problem for the full-space heat equation (19.12). In this case
tD = 8 and no assumption of the kind (19.15) is necessary and so

u(t, x) = Ex�u(0, Bt)
�

(19.17)

Inspired by this, we note:

Lemma 19.5 (Full-space heat equation) For any bounded measurable f : Rd
Ñ R, set

@t • 0 @x P Rd : u f (t, x) := Ex� f (Bt)
�

(19.18)

Then u f is of type C1,2((0, 8) ˆ D), solves (19.12) and obeys

lim
tÓ0

u(t, x) = f (x) (19.19)

at all Lebesgue-differentiability points of f . If also f P C(R) then u P C([0, 8) ˆ R).

Note that (19.19) only “probes” the so called radial limit, which in our case means that
the spatial coordinate remains constant. This is what needs to be varied as well to get
the continuity of u f when f is continuous.

The representation (19.18) is classical in analysis and it requires no probability be-
cause it amounts to a convolution with the probability density of N (x, t). Matters get
more interesting in non-trivial domains D. Here if (19.15) is not assumed, then (19.16) is
replaced by

u(t, x) = Ex
⇣

u
�
(t ´ tD) _ 0, Bt^tD

�⌘
+ Ex

ª t^tD

0
r(Bs)ds (19.20)

For the homogeneous problem this readily yields:

Corollary 19.6 (Maximum principle for heat equation) Let T ° 0 and D Ñ Rd be non-
empty, bounded and open. If u P C([0, T]ˆ D) is of type C1((0, T))ˆ C2(D) and solves (19.12)
for all (t, x) P (0, T) ˆ D, then

sup
xP(0,T)ˆD

ˇ̌
u(t, x)

ˇ̌
§ sup

xPB([0,T]ˆD)

ˇ̌
u(t, x)

ˇ̌
(19.21)

In particular, if u(0, ¨) = 0 on D and u(¨, x) = 0 on (0, T) for all x P BD, then u = 0. The
mixed Cauchy/boundary-value problem for the heat equation in [0, T]ˆ D has a unique solution.
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The Maximum Principle resolves uniqueness for the heat equation in bounded do-
mains. A growth condition of sorts needs to be imposed in unbounded domains. Here
is a theorem whose proof, which is somewhat delicate, can be found in Karatzas-Shreve:

Theorem 19.7 (Tychonoff’s Uniqueness theorem) For any T ° 0 and any function u P

C1,2((0, T) ˆ R) that solves (19.12) in (0, 8) ˆ R,

@x P R : lim
(t,y)Ñ(0,x)

(t,y)P(0,8)ˆR

u(t, y) = 0 (19.22)

and
DC, c ° 0 @x P R : sup

0†t†T

ˇ̌
u(t, x)| § Cecx2

(19.23)

imply u = 0.

Our final result concerns the same generalization that the Helmhotz equation and the
eigenfunction representation were relative to the Laplace equation. For simplicity, we
treat just the full-space homogeneous case this time.

Theorem 19.8 (Feynman-Kac formula) Let u P C1,2((0, 8) ˆ Rd) X C([0, 8) ˆ Rd) be
bounded and such that, for some bounded measurable V : Rd

Ñ R,

@t ° 0 @x P Rd :
Bu
Bt

(t, x) = 1
2 Du(t, x) + V(x)u(t, x) (19.24)

Then

u(t, x) = Ex
✓

u(0, Bt) exp
!ª t

0
V(Bs)ds

)◆
(19.25)

The reason for R. Feynman’s name appearing on this is that formulas of this kind
are the basis of his “path integral” representation of solutions to the Schrödinger equa-
tion and other problems in quantum mechanics. It was really M. Kac who derived the
above formula in the context of the heat-equation where the “path integral” acquires the
rigorous meaning of integral with respect to the Wiener measure.

The original derivation of the above formula was done in the context of backward heat
equation, i.e.,

´
Bu
Bt

= 1
2 Du + V(¨)u (19.26)

Here one gets, for t P [0, T] and x P Rd,

u(t, x) = Ex
✓

u(T, BT´t) exp
!ª T´t

0
V(Bs)ds

)◆
(19.27)

i.e., the solution is represented by its terminal condition at time t = T.

Further reading: Karatzas-Shreve, Sections 4.3-4.3
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