
95 MATH 275D notes

18. BOUNDARY REGULARITY

In this lecture we wrap up the discussion of the Dirichlet problem for the Laplace equa-
tion started in the previous lecture.

18.1 Boundary points of continuity.

Recall that in Proposition 17.4 we showed that, for any g : BD Ñ R bounded and mea-
surable, the function ug : D Ñ R given by

ug(x) := Ex�g(BtD)1ttD†8u
�

(18.1)

is C2(D) and solves the Laplace equation (17.2). Note that while ug = g on BD, this does
not say anything about the limit behavior of ug(z) as z Ñ x P BD nor about the relation
of the potential limit to g(x). As

Px(tD = 8) = 1 ´ u1(x) (18.2)

the same applies to the second term in (17.15).
Building on the observations in item (2) of the list at the beginning of Section 17.2, we

now readily check that continuity at boundary points is not generally guaranteed. The
advantage of the probabilistic representation (18.1) over potential-theoretic tools is that
it makes this very easy to demonstrate.

Starting with two-dimensional situations, let D := tx P Rd : 0 † |x| † 1u be the
punctured unit disc. Then BD = t0u Y tx P Rd : |x| = 1u and Corollary 16.6 tells us
that BtD R 0 a.s. It follows that the value g(0) is immaterial for (18.1). Two alternatives
are possible — either the limit of ug(z) as z Ñ 0 in D does not exist, or it does but it is
unrelated to what we set for g(0) — each of which imply that the Dirichlet problem is
not solvable for generic (bounded measurable) g.

A similar reasoning applies in all d • 3 where removing a one-dimensional line seg-
ment from a unit ball creates part of the boundary that will not be found by Brown-
ian motion (as its projection on orthogonal subspace of the segment is a d ´ 1 • 2-
dimensional Brownian motion) and so we are not free to prescribe boundary values on
it. In this case D is even connected. These examples are readily generalized as follows:
Recall that the a-dimensional Hausdorff outer measure H

a(A) of A Ñ Rd is defined as
follows:

H
a(A) := inf

e°0
inf

! ÿ

i•1

diam(Ai)
a : A Ñ

§

i•1

Ai ^ @i • 1 : diam(Ai) † e
)

(18.3)

where diam is the Euclidean diameter. The following lemma is left as an exercise:

Lemma 18.1 Let d • 3 and let D Ñ Rd be non-empty, bounded and open. Then

@A P B(BD) : H
d´2(A) = 0 ñ @x P D : Px(BtD P A) = 0 (18.4)

This shows that, in d • 3, any subset of BD that has Hausdorff dimension less than
d ´ 2 will not be hit by Brownian motion and so g can be changed arbitrarily there with-
out affecting (18.1). However, as pointed out already in Section 17.2, a more subtle ob-
struction to boundary continuity arises from that fact that Brownian motion started near
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a boundary point x P BD does not hit BD near x — and so ug samples values of g that can
be very different from g(x). As it turns out, this can ultimately be phrased as a statement
for Brownian motion started directly from the boundary point.

Theorem 18.2 Let D Ñ Rd be non-empty open and, writing tBt : t • 0u for a d-dimensional
standard Brownian motion, set

t̂D := inftt ° 0 : Bt R Du. (18.5)

For each g : BD Ñ R bounded measurable, let ug : D Ñ R be as in (18.1). Then for any x P BD,
the following are equivalent:

(1) Px(t̂D = 0) = 1
(2) for each bounded measurable g : BD Ñ R :

g is continuous at x ñ ug is continuous at x (18.6)

Here Px is the law of B such that Px(B0 = x) = 1.

The reader might wonder whether t̂D is in fact a well defined random variable. This
follows from the fact that

t̂D := inf
nPN

sup
 

k2´n : k P N r t0u ^ (@` § k : B`2´n P D)
(

(18.7)

where the infimum is actually an n Ñ 8 limit because the supremum is non-increasing
in n. However, t̂D is not a stopping time unless the underlying filtration is right-continuous
because tt̂D § tu requires an “infinitesimal peek” at the Brownian path past time t.

Notwithstanding, t̂D is a stopping time for the filtration F
B
t+ut•0 and tt̂D = 0u P F

B
0+-

measurable. Blumenthal’s Zero-One Law therefore gives

@x P BD : Px(t̂D = 0) P t0, 1u (18.8)

Thus either (almost) all Brownian paths started from infinitesimally close to x exit D
instantaneously, or (almost) none does so.

18.2 Proof of Theorem 18.2.

We start with a key technical step:

Proposition 18.3 Let D Ñ Rd be open and non-empty. Then, for each x P BD,
(1) for all tznunPN P DN satisfying zn Ñ x and all r ° 0,

lim inf
nÑ8 Pzn

�
tD † 8 ^ |BtD ´ x| † r

�
• Px(t̂D = 0) (18.9)

(2) there exists tznunPN P DN with zn Ñ x such that

lim
rÓ0

lim sup
nÑ8

Pzn
�
tD † 8 ^ |BtD ´ x| † r

�
= Px(t̂D = 0) (18.10)

To see why these are relevant, we first give:
Proof of Theorem 18.2 from Proposition 18.3. Let g : BD Ñ R be bounded and measurable
and x P BD such that Px(t̂D ° 0) = 0. Write

Er := ttD = 8u Y
 

tD † 8 ^ |BtD ´ x| • r
(

(18.11)
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for the event complementary to that in (18.9) and (18.10). For z P D we then have
ˇ̌
ug(z) ´ g(x)

ˇ̌
§

ˇ̌
ˇEz�g(BtD)1ttD†8u ´ g(x)

�ˇ̌
ˇ

§ sup
yPB(x,r)XBD

ˇ̌
g(y) ´ g(x)

ˇ̌
+ 2}g}8Pz(Er)

(18.12)

Proposition 18.3(1) along with the continuity of g at x show that this tends to zero in the
limit as z Ñ x in D followed by r Ó 0. Since ug(x) = g(x), this implies continuity of ug
at x for all a P R and all g as above.

For the opposite direction assume that x P BD obeys Px(t̂D ° 0) ° 0. Proposi-
tion 18.3(2) gives d ° 0, r ° 0 and a sequence tznun•1 Ñ D with zn Ñ x such that

@n • 1 : Pzn(Er) • d (18.13)

Setting h(x) := ug(z) + Pz(tD = 8) for

g(z) := maxt1, r´1
|z ´ x|u, (18.14)

use that g • 0 and g(z) = 1 when |z ´ x| • r we get

h(zn) • Ezn
�

g(BtD)1t|BtD ´x|•ru
�
+ Pzn(tD = 8) • Pzn(Er) • d ° 0 (18.15)

As h(x) = g(x) = 0, the function h fails to be continuous at x. But this means that
either ug fails to be continuous or u1(z) := Ez(1 ¨ 1ttD†8u) = 1 ´ Pz(tD = 8) fails to be
continuous. ⇤

It remains to prove Proposition 18.3. The proof of (1) needs:

Lemma 18.4 Let t ° 0 and A P s(Bs : s • t). Then x fiÑ Px(A) is continuous.

Proof. Realizing the problem on the Wiener space, let qt(A) := tw(¨ ´ t) : w P Au. Since
Bt = N (x, t1) under Px, where 1 is the d-dimensional identity matrix, writing gt for the
density of N (x, t1) and conditioning on Bt yields

Px(A) =
ª

Rd
gt(z ´ x)Pz�qt(A)

�
dz (18.16)

The claim then follows from the fact that z fiÑ gt(z) is continuous in L1(Rd). ⇤
With this in hand, we then give:

Proof of Proposition 18.3(1). Fix r ° 0 and recall the event Er from (18.11). Then write, for
any e ° 0,

Pz(Er) § Pz(tD ° e) + Pz�tD § e ^ |BtD ´ x| • r
�

(18.17)
Assuming |z ´ x| † r/2, the second probability is bounded by

Pz
⇣

sup
s§e

|Bs ´ z| ° r/2
⌘
= P0

⇣
sup
s§1

|Bs| ° re´1/2/2
⌘

(18.18)

where we also invoked shift invariance and diffusive scaling of the Brownian motion
(see Proposition 5.1(1,2)). The probability on the right-hand side vanishes as e Ó 0 by
continuity of the paths.
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Concerning the first term on the right of (18.17), pick d P (0, e) and let

tD,d := inftt • d : Bt R Du (18.19)

Then tD § tD,d and so
Pz(tD ° e) § Pz(tD,d ° e) (18.20)

The reason for invoking tD,d is that ttD,d ° eu P s(Bs : s • d). Lemma 18.4 thus shows

lim sup
nÑ8

Pzn(tD ° e) § Px(tD,d ° e) (18.21)

whenever zn Ñ x inside D. We now observe that tD,d Ó t̂D as d Ó 0. This shows

lim
eÓ0

lim sup
dÓ0

Px(tD,d ° e) § lim
eÓ0

Px(t̂D • e) = Px(t̂D ° 0) (18.22)

thus proving (18.9). ⇤
The proof of the second part turns out to be more involved:

Proof of Proposition 18.3(2). Note that we may assume that Px(t̂D ° 0) ° 0 and, by
Blumenthal’s zero-one law, thus Px(t̂D ° 0) = 1 for otherwise the claim follows from (1)
and the fact that the left-hand side of (18.10) is at most one. For the same reason we may
assume that d • 2 because, in d = 1, we have Px(t̂D = 0) = 1 by the fact that the set of
times when the Brownian motion returns its starting point have no points isolated from
the right. We will nonetheless continue writing Px(t̂D = 0) until the fact that this is zero
is actually needed.

We start with some observations. Abbreviate

Fr :=
 

t̂D † 8 ^ |Bt̂D ´ x| † r
(

(18.23)

and note that Pzn(Fr) coincides with probability in (18.10) because, by continuity of
paths, Pz(t̂D = tD) = 1 for all z P D. This event is relevant because

£

r°0
Fr =

 
t̂D † 8 ^ Bt̂D = x

(
(18.24)

implies £

r°0
Fr Ö tt̂D = 0u X tB0 = xu (18.25)

and
tB0 = xu X

£

r°0
Fr Ñ tt̂D = 0u X tB0 = xu

Y

⇣
tB0 = xu X

 
inftt ° 0 : Bt = xu † 8

(⌘
.

(18.26)

By lack of recurrence of Brownian motion to points in all d • 2 (see Corollary 16.6), the
event on the right has Px-probability zero and so we get

lim
rÓ0

Px(Fr) = Px
⇣ £

r°0
Fr

⌘
= Px(t̂D = 0) (18.27)

by continuity of probability and the fact that r fiÑ Fr is non-decreasing.
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Since tt̂D § tu P Fs for each s ° t by, e.g., (18.7), t̂D is a stopping time for the filtration
tFt+ut•0. Relying on the same argument as (17.27), the Strong Markov Property gives

Ex(1Fr |Ft̂D^t+) = PBt̂D^t(Fr) Px-a.s. (18.28)

The Backward Lévy Theorem then shows

Ex(1Fr |Ft̂D^t+) ›Ñ
tÓ0

Ex
⇣

1Fr

ˇ̌
ˇ
£

t°0
Ft̂D^t+

⌘
= Px(Fr) Px-a.s. (18.29)

where we used that
ì

t°0 Ft̂D^t+ Ñ F0+ and that, by Blumenthal’s Zero-One Law, Px is
trivial on F0+.

Combining the above observations along with the assumption that t̂D ° 0 Px-a.s., we
have shown that

@r ° 0 : PBt(Fr) ›Ñ
tÓ0

Px(Fr) Px-a.s. (18.30)

where the null set may depend on r. Using that a countable interesection of full measure
events is a full measure event, it follows that there exists a Brownian path B such that
t̂D ° 0 and the limit (18.30) takes place for all r P t2´k : k • 0u simultaneously. For the
choice zn := B1/n when n • n0 := r1/t̂Ds and zn := zn0 otherwise we then get that,
thanks to the monotonicity of r fiÑ Fr,

lim
rÓ0

lim sup
nÑ8

Pzn
�
tD † 8 ^ |BtD ´ x| † r

�

= lim
kÑ8

lim sup
nÑ8

PB1/n(F2´k) = lim
kÑ8

Px(F2´k) = Px(t̂0 = 0)
(18.31)

thus proving the second part of the claim as well. ⇤
Note that equality may not hold in (18.9) for all sequences when Px(t̂D = 0) is less

than one, and thus vanishes. Indeed, taking tznun•1 Ñ D for which zn Ñ x but that
so while nearly “grazing” BD — which means dist(zn, BD) ! dist(zn, x) — effectively
probes other parts of the boundary rather than a neighborhood of x. The argument after
(18.30) shows that this is not the case for sequences derived from Brownian paths started
from x and contained in tt̂D ° 0u and, for these, (18.10) then does hold.

18.3 Regular points.

In light of Theorem 18.2, it is natural to put forward:

Definition 18.5 We say that x P BD is regular if

Px(t̂D = 0) = 1 (18.32)

The salient conclusion for solving the Laplace equation with Dirichlet boundary con-
dition is then stated as:

Corollary 18.6 For all D Ñ Rd non-empty open, the Dirichlet problem (17.2–17.3) is solvable
in the class of bounded functions for all bounded boundary conditions g P C(BD) if and only if
every x P BD is regular.
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Proof. That ug is harmonic on D for each bounded g P C(D) has been checked in the
proof of Proposition 17.4. Equivalence of the continuity at the boundary with regularity
thereof is then verified using Theorem 18.2. ⇤

We note that the concept of a regular point originates in potential theory where it is
typically defined by alternative (1) in Theorem 18.2. A necessary and sufficient condition
for a point x P BD to be regular is the barrier condition. This refers to the existence of a
function f P C(D) that is superharmonic on D (i.e., with mean value on each B(z, r) Ñ D
no larger than f (z)) such that f ° 0 on D r txu and f (x) = 0.

In D Ñ R2 with BD connected and containing at least two points, all boundary points
are regular while in d • 3, the tip of a sufficiently thin inward “spike” — known as the
Lebesgue thorn, as such examples were first noted by Lebesgue in 1912 — is not regular.

To prevent such situations from happening, one may impose a cone condition on BD
which states that if B(x, r) X Dc contains (for some small r ° 0) a cone of positive aper-
ture with apex at x P BD, then x is regular. The proof of this relies on two convenient
features of this concept:

(1) locality of the event tt̂D = 0u, which means irrelevance of changes to D outside a
ball of any positive radius centered at the boundary point, and

(2) monotonicity of D fiÑ t̂D under the set inclusion.
These show that, if a Brownian motion started from the apex of any cone of positive
aperture enters the cone instantaneously, then it exits D instantaneously at any x P BD
to which such a cone can be attached inside Dc.

Thanks to Theorem 18.2 we know that, assuming all points in BD to be regular, the
one-parameter family of functions in Proposition 17.4 solve the Dirichlet problem (17.2–
17.3). An intriguing question is whether other (linearly independent) bounded harmonic
functions can be added to this that vanish on BD. This is resolved by way of compactifi-
cation of D by adding to D a so-called Poisson boundary at infinity which then allows us
to treat this again as a Dirichlet problem in a compact domain.

Further reading: Karatzas-Shreve, Sections 4.2C
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