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17. SOLVING DIRICHLET-LAPLACE PROBLEM

We proceed to discuss some specific applications of the Itô formula to solutions of el-
liptic and parabolic differential equations. Continuing on with on our recent practice,
throughout we write Px for the law of an underlying process X — typically, the d-
dimensional standard Brownian motion — started at x in the sense

Px(X0 = x) = 1 (17.1)

and denote by Ex the expectation with respect to Px.

17.1 Dirichlet problem.

Recall the notation Du for the Laplacian of a (twice-differentiable) function u. We start
with a classical problem from PDE theory.

Definition 17.1 (Dirichlet problem for Laplacian equation) Given D Ñ Rd
non-empty

open and g : BD Ñ R, we say that u : D Ñ R solves the Dirichlet problem for Laplacian

equation with boundary condition g if u P C2(D),

@x P D : Du(x) = 0 (17.2)

and

@x P BD : lim
yÑx
yPD

u(y) = g(x) (17.3)

A function satisfying (17.2) called harmonic, although the definition of that concept is
usually done via the Mean-Value Property that reads

u(x) =
1

l(B(0, r))

ª

B(0,r)
u(x + z)l(dz) (17.4)

whenever x P D and B(x, r) := ty P Rd : |x ´ y| † ru obeys B(x, r) Ñ D. The advantage
of this definition is that it only requires u to be locally Lebesgue integrable. That this
implies u P C2(D) and (17.5) needs an argument for which we refer to PDE literature.

As is readily checked, (17.3) forces g to be continuous on BD (under the Euclidean
metric) and so the above in fact reduces to finding u P C2(D) X C(D) such that Du = 0
on D and u = g on BD, for a given g P C(BD). Our starting observation is that any
bounded solution to this problem can be represented probabilistically in a fairly large
class of underlying domains:

Theorem 17.2 (Kakutani 1944) Let D Ñ Rd be a non-empty open set and let

tD := inftt • 0 : Bt R Du (17.5)

the first exit time from D of standard d-dimensional Brownian motion B. Then tD is a stopping
time with BtD P BD on ttD † 8u. Moreover, if u P C2(D) X C(D) is bounded and such
that Du = 0 on D, then

@x P D : Px(tD † 8) = 1 (17.6)
implies

@x P D : u(x) = Ex�u(BtD)
�
. (17.7)
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Proof. Let Dn := tx P D : dist(x, Dc) ° 1/n ^ dist(0, x) † nu where “dist” refers to the
Euclidean distance. Assume that n is so large that Dn ‰ H. Then

sup
xPDn

ˇ̌
ru(x)

ˇ̌
† 8 (17.8)

and the Itô formula cast in vector notation reads

du(Bt^tDn
) = 1ttDn °turu(Bt^tDn

) ¨ dBt + 1ttDn °tuDu(Bt^tDn
)dt (17.9)

where condition (17.8) is needed to define the stochastic integral. The second term exists
trivially since, in light of Du = 0 on D, it vanishes. It follows that

Mt := u(Bt^tDn
) (17.10)

is a continuous local martingale which, since u is bounded, is a bounded martingale
under Px for any x P D. Hence,

@t • 0 @x P D : u(x) = Ex(M0) = Ex(Mt) = Ex�u(Bt^tDn
)
�

(17.11)

Now use that, from (17.6), t ^ tDn Ñ tD † 8 as n Ñ 8 followed by t Ñ 8 with
Bt^tDn

Ñ BtD P BD in these limits, Px-a.s., by continuity of B. As u is bounded and ex-
tends continuously to D, the double limit passes into the expectation using the Bounded
Convergence Theorem. ⇤

Note that (17.7) expresses u in D using its boundary values. Another way to write this
is via

u(x) =
ª

BD
u(z)HD(x, dz) (17.12)

where HD : D ˆ B(Rd) Ñ [0, 1] is given by

HD(x, A) := Px(BtD P A). (17.13)

In short, HD(x, ¨) is the exit distribution from D of the Brownian motion started at x. In
analysis and PDE theory, HD is called the harmonic measure because, as can be shown,
x fiÑ HD(x, A) is harmonic on D for each A P B(Rd). The representation (17.12) is the
basis of various Poisson integral formulas.

The assumption that u is bounded is key; indeed, the function u(x) := log x is har-
monic in D := tx P R2 : |x| ° 1u yet it vanishes on BD and so (17.7) cannot hold. This
is because the “boundary at infinity” carries a non-trivial contribution under the n Ñ 8

limit of (17.11).
The assumption (17.6) is valid for all D bounded by the fact that the d-dimensional

Brownian motion is unbounded almost surely. It is worth noting that the representation
(17.7) also implies a uniqueness clause. Indeed, we have:

Corollary 17.3 (Maximum Principle) Assuming (17.6), any bounded u P C2(D) X C(D)
satisfying Du = 0 on D obeys the Maximum Principle,

sup
xPD

ˇ̌
u(x)

ˇ̌
§ sup

xPBD

ˇ̌
u(x)

ˇ̌
(17.14)

In particular, under (17.6) the Dirichlet problem in Definition 17.1 has a unique bounded solu-
tion, if a solution exists at all.
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Proof. The inequality (17.14) follows from (17.7). The difference of two solutions to (17.2–
17.3) is a function u P C2(D) X C(D) with u = 0 on BD. The Maximum Principle then
gives u = 0 on D. ⇤

17.2 Non-uniqueness of solutions and Strong Markov property.

It has been a subject of interesting development in mathematics of the 19th and 20th
century to realize that, even for continuous and bounded boundary values, the Dirichlet
problem may either fail to be uniquely solvable or fail to be solvable. The proof of
Theorem 17.2 highlights two mechanisms for this failure:

(1) If Px(tD † 8) † 1, then some Brownian paths keep wandering forever inside D
and, if u(Bt^tD) remains non-trivial along these, they make non-trivial contribu-
tion to (the n Ñ 8 limit of) the expectation in (17.11).

(2) Even with tD † 8 a.s., when the Brownian motion is started from a point x P D
very near some x0 P BD, there is no reason why BtD should be near x0 and thus
why u defined by (17.7) should be continuous at all boundary points.

We start by analyzing (1) in some detail. As it turns out, condition (17.6) is in fact neces-
sary for uniqueness of a bounded solution.

Proposition 17.4 Let D Ñ Rd be non-empty open and let g : BD Ñ R be bounded and
measurable. Then for each a P R and x P D,

u(x) := Ex�g(BtD)1ttD†8u
�
+ aPx(tD = 8) (17.15)

defines u P C2(D) such that Du = 0 on D and u = g on BD. (No statement of continuity at the
boundary is made here.)

Fromula (17.15) indeed gives a mechanism for non-uniqueness because, once Px(tD =
8) ‰ 0 at some x P D, varying the parameter a yields different functions with u = g
on BD. A key tool in the proof of this lemma is the following theorem, which is of
independent interest:

Theorem 17.5 (Strong Markov property of Brownian motion) Let B be a d-dimensional
standard Brownian motion started from x P Rd, tFtut•0 a Brownian filtration and T a finite
stopping time for tFtut•0. Then  

BT+t ´ BT : t • 0
(

(17.16)

is a d-dimensional standard Brownian motion independent of FT+ under Px.

Here and in the proof we will use the following concept:

Definition 17.6 Let T be a stopping time for filtration tFtut•0. Then

FT+ :=
!

A P F :
�
@t • 0 : A X tT § tu P Ft+

�)
(17.17)

where Ft+ :=
ì

s°t Fs defines the right-continuous version tFt+ut•0 of tFtut•0.

We observe the following facts, whose easy proofs we refer to the reader:
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Lemma 17.7 Let tFtun•1 be a filtration and T, S and tTnun•1 stopping times. Then:
(1) FT+ =

 
A P F : (@t • 0 : A X tT † tu P Ft)

(

(2) S § T ñ FS+ Ñ FT+ and

S † T on tT † 8u ñ FS+ Ñ FT (17.18)

(3) Tn Ó T ñ FT+ =
ì

n•1 FTn+

Proof of Theorem 17.5. Assume first that T is a bounded stopping time. Pick l P Rd and
note that, by Itô formula and the fact that xl ¨ Byt = }l}

2
2t,

Zt = exp
!

il ¨ Bt +
}l}

2
2

2
t
)

(17.19)

is a continuous local martingale and, since sups§t |Zs| is bounded for each t • 0, a mar-
tingale under Px. For T a bounded stopping time and u • 0, the fact that T + u is a
stopping time shows, via Optional Sampling Theorem, that

Ex
⇣

eil¨BT+u+
}l}2

2
2 (T+u)

ˇ̌
ˇFT

⌘
= Ex(ZT+u|FT) = ZT = eil¨BT+

}l}2
2

2 T a.s. (17.20)

Using the FT-measurability and boundedness of the right-hand side, we recast this as

Ex
⇣

eil¨(BT+u´BT)
ˇ̌
ˇFT

⌘
= e´ }l}2

2
2 u a.s. (17.21)

Invoking this iteratively (similarly as, e.g., in (14.27)) we then derive

Ex
✓

exp
!

i
nÿ

k=1

lk ¨ (BT+tk ´ BT+tk´1)
)

1A

◆

= exp
!

´
1
2

nÿ

k=1

}lk}
2
2(tk ´ tk´1)

)
Px(A) (17.22)

for all 0 § t0 † t1 † ¨ ¨ ¨ † tn, all l1, . . . , l P Rd and all A P FT+t0 .
At this point we have (17.22) for all bounded stopping times T. For T just finite we

employ a limit argument. First, restrict to t0 ° 0 and take T ^ n instead of T. Noting
that, with the help of Lemma 17.7,

@A P FT+t0 @n • 1 : A X tT § nu P FT+t0 X Fn = F(T+t0)^n Ñ FT^n+t0 (17.23)

the identity (17.22) applies for A replaced by A X tT § nu and BT+¨ by BT^n+¨, for all
A P FT+t0 . Passing to n Ñ 8 inside the expectation using 1AXtT§nu Ñ 1A, the continuity
of Brownian motion and A fiÑ Px(A) and the Bounded Convergence Theorem on the
left-hand side yield (17.22) for all A P FT+t0 . Restricting to A P FT+ with the help fo
Lemma 17.7 we can take t0 Ó 0 using the continuity of Brownian motion and, one more
time, the Bounded Convergence Theorem. This extends (17.22) to all finite stopping
times T, all t0 • 0 and all A P FT+.

Invoking the Cramér-Wold device, from (17.22) — note that } ¨ }2 is the Euclidean
norm — we get that the increments

 
BT+ti ´ BT+ti´1 : i = 1, . . . , n

(
(17.24)
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are independent, and independent of FT+, with

BT+ti ´ BT+ti´1 = N (0, (ti ´ ti´1)1) (17.25)

for 1 the unit d ˆ d-matrix. As t fiÑ BT+t ´ BT is continuous, BT+¨ ´ BT is a standard
Brownian motion independent of FT+. ⇤

Note that Theorem 17.5 generalizes the Brownian shift symmetry (see Proposition 5.1)
to shifts by a stopping time. As the shift can be thought of a statement of the Markov
property, the shift by a stopping time is referred to as the Strong Markov property. What
this term amounts to expressed in:

Corollary 17.8 Under the setting and notation of Theorem 17.5, conditional on FT+ the pro-
cess tBT+t : t • 0u has the law of the standard Brownian motion started at BT.

The result has another useful consequence:

Corollary 17.9 (Blumenthal’s zero-one law) Let B denote the d-dimensional standard Brow-
nian motion and let F B

t := s(Bs : s § t). Then for all x P Rd,

@A P F
B
0+ : Px(A) P t0, 1u (17.26)

Proof. As tF
B
t ut•0 is a Brownian filtration, Theorem 17.5 for T := 0 tells us that F B

0+ is
independent of s(Bt : t • 0) and, in particular, of F B

0+. Hence, @A, A1
P F

B
0+ we have

Px(A X A1) = Px(A)Px(A1). Taking A1 = A yields the claim. ⇤
We remark that Blumenthal’s zero-one law explains why the limes superior in Khinchin’s

Law of the Iterated Logarthim takes an a.s. constant value. Returning to the problem of
non-uniqueness of solutions to the Dirichlet problem, we now give:
Proof of Proposition 17.4. Pick x P D and start with u(x) = Ex(g(BtD)1ttD†8u). Let r ° 0
be so small that the Euclidean ball B(x, r) obeys B(x, r) Ñ D. Abbreviate T := tB(x,r) and
denote Wt := BT+t. Abbreviating tW

D := inftt • 0 : Wt R Du, on ttD † 8u (which forces
T † 8) we have

tD = T + tW
D ^ BtD = WtW

D
(17.27)

and thus, by a plain rewrite of the quantities under conditional expectation,

Ex
⇣

g(BtD)1ttD†8u)
ˇ̌
ˇFT

⌘
= Ex

⇣
g(BtW

D
)1ttW

D †8u)
ˇ̌
ˇFT

⌘
on tT † 8u (17.28)

By Corollary 17.8, conditional on FT, we get Wt = BT + rBt, where rB is a standard Brow-
nian motion (started at 0) independent of FT. Using the definition of u, the expectation
on the right of (17.28) thus equals u(BT) Px-a.s. As Px(tB(x,r) † 8) = 1, we get

@x P D @r ° 0 : B(x, r) Ñ D ñ u(x) = Ex�u(BtB(x,r) )
�

(17.29)

Multiplying by rd´1, integrating with respect to the Lebesgue measure over an interval
of r and using that the d-dimensional Brownian motion is rotationally invariant (see
remarks after (5.8)) then shows that u obeys the Mean-Value Property (17.4). Hence we
get u P C2(D) and Du = 0 on D.
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The above takes care of the case a = 0; a completely analogous argument for u(x) :=
Px(tD = 8) = 1 ´ Ex(1 ¨ 1ttD†8u) then deals with a ‰ 0 as well. ⇤

Having discussed situations with multiple solutions, the next topic is regularity at the
boundary. We will do this (and more) in the next lecture.

Further reading: Karatzas-Shreve, Sections 4.1, 4.2AB
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