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16. BESSEL PROCESSES

We proceed to discuss some specific applications of the Itô formula and time change to
Brownian motion. With the Lévy characterization in hand, we look back at the equa-
tion (13.46) satisfied by the radial process associated with the d-dimensional standard
Brownian motion. For the diffusive term on the right we get:

Lemma 16.1 Using the notation (13.44), the process

rBt :=
dÿ

i=1

ª t

0

1
Rs

B(i)
s dB(i)

s (16.1)

is a standard Brownian motion.

Proof. Clearly, rB takes the form (14.20) with (14.21) showing its quadratic variation pro-
cess to be

xrByt =
dÿ

i=1

ª t

0

1
R2

s
[B(i)

s ]2ds =
ª t

0
ds = t (16.2)

Theorem 14.6 shows that rB is a standard Brownian motion as claimed. ⇤
We now put forward:

Definition 16.2 Let d P R. A d-dimensional Bessel process is a continuous [0, 8)-
valued stochastic process (or positive semimartingale) tXt : t • 0u such that, denoting

t0 := inf
 

t • 0 : Xt = 0
(

(16.3)

we have @t • t0 : Xt = 0 and

dXt =
d ´ 1
2Xt

dt + dBt on tt0 ° tu (16.4)

where B is a (one-dimensional) standard Brownian motion.

We remark that (16.4) means that

Xt = X0 +
ª t

0
1tt0°su

d ´ 1
2Xs

ds + Bt0^t (16.5)

We will write Px for the law of this process subject to the initial condition

Px(X0 = x) = 1 (16.6)

The requirement that X remains constant after hitting 0 for the first time technically
makes X a Bessel process with absorbing boundary condition at 0. We make this choice as
it is convenient in what follows.

Lemma 16.1 combined with the calculation leading to (13.46) show that the radial
process of the d-dimensional standard Brownian motion stopped upon first hit of zero
is the d-dimensional Bessel process according to Definition 16.2. In particular, the latter
process exists for all integer d • 1.

A first natural question is now whether a d-dimensional Bessel process exists also
for d’s that are not positive integers and/or are not positive. In addition, we may worry
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about the process being unique in a sense to be specified. We will answer this — it does
and it is! — using the theory of stochastic differential equations. The next question is
how to decide whether t0 † 8 or t0 = 8 for the process started from X0 = x ° 0. In
order to do this, we first note:

Lemma 16.3 For d P R, let X be a d-dimensional Bessel process and let fd(x) : (0, 8) Ñ R

be defined by

fd(x) :=

#
x2´d if d ‰ 2
log x if d = 2

(16.7)

Then tfd(Xt) : t • 0u is a local martingale.

Proof. Let q P R. The Itô formula then shows

dXq
t = qXq´1

t dXt +
1
2

q(q ´ 1)Xq´2
t dxXyt

= 1tt0°tuqXq´1
t dBt + 1tt0°tu

h
q

d ´ 1
2

+
1
2

q(q ´ 1)
i

Xq´2
t dt

(16.8)

The coefficient of the drift term vanishes when q = 2 ´ d thus showing that tX2´d
t : t • 0u

is a local martingale for all d. This yields a trivial process for d = 2, so in that case we
instead look at

d log Xt =
1

Xt
dXt ´

1
2X2

t
dxXyt

= 1tt0°tu
1

Xt
dBt + 1tt0°tu

⇣d ´ 1
2

+
1
2

⌘ 1
X2

t
dt

(16.9)

and note that here the coefficient of the drift term vanishes exactly when d = 2. In light
of the definition of fd, this proves the claim. ⇤

With the help of the above local martingale, we now prove:

Lemma 16.4 Let X be a d-dimensional Bessel process. Set, for each a ° 0,

ta := inf
 

t • 0 : Xt = a
(

(16.10)

Then
@0 † a † x † b : Px(ta ^ tb † 8) = 1 (16.11)

and

@0 † a † x † b : Px(ta † tb) =
fd(b) ´ fd(x)
fd(b) ´ fd(a)

(16.12)

Proof. Let X be given by (16.5) with X0 = x a.s. and assume that rB is a standard Brownian
motion independent of X and B. We assume that rB is adapted to the filtration underlying
our setting. Given a P (0, x) and b P (x, 8), let Z be a continuous process such that, for
each t • 0,

Zt = fd(X0) +
ª t

0
1tta^tb°suf1

d(Xs)dBs + 1tta^tb§tu(rBt ´ rBta^tb) a.s. (16.13)
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Then
@t § ta ^ tb : Zt = fd(Xt) (16.14)

In addition, letting
T(t) := inf

 
u • 0 : xZyu • t

(
(16.15)

and noting that

xZyt =
ª t

0

⇥
1tta^tb°suf1

d(Xs)
2 + 1tta^tb§su

⇤
ds, (16.16)

the fact that (f1
d)

2 is bounded and uniformly positive on [a, b] shows that

Dc1, c2 P (0, 8) @t • 0 : c1t § T(t) § c2t (16.17)

By Theorem 15.1 tZT(t) : t • 0u is the standard Brownian motion started at fd(x) and the
event ta ^ tb = 8 corresponds to this Brownian motion staying between fd(a) and fd(b)
for all times. This is readily checked to be a null event thus proving (16.11).

In order to prove (16.12) we proceed by a familiar argument. Let

Mt := fd(Xt^ta^tb) (16.18)

This process is a local martingale by Lemma 16.3 and, with all of its path bounded be-
tween fd(a) and fd(b), it is a martingale by Lemma 14.7. The Optional Stopping Theo-
rem (namely, Theorem 14.6(2)) then shows

fd(x) = Ex(M0) = Ex(Mta^tb)

= fd(a)Px(ta † tb) + fd(x)Px(tb † ta)
(16.19)

Using that
Px(tb † ta) = 1 ´ Px(ta † tb) (16.20)

by (16.11), the formula (16.12) now follows by a simple calculation. ⇤
We are now ready to draw the main conclusions about Bessel processes:

Theorem 16.5 Let d P R and let tXt : t • 0u be a d-dimensional Bessel process started
from x ° 0. Then we have:

(1) if d ° 2, then

t0 = 8 ^ inf
t•0

Xt ° 0 ^ lim sup
tÑ8

Xt = 8 a.s. (16.21)

(2) if d † 2, then
t0 † 8 ^ sup

t•0
Xt † 8 a.s. (16.22)

(3) if d = 2, then
t0 = 8 ^ @a ° 0 : ta † 8 a.s. (16.23)

and thus
lim inf

tÑ8
Xt = 0 ^ lim sup

tÑ8
Xt = 8 a.s. (16.24)
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Proof. We will rely heavily on (16.11–16.12) along with the fact that, regardless of d,

tb ›Ñ
bÑ8

8 (16.25)

which follows from the fact that X has continuous and thus locally bounded sample
paths. We now proceed to deal separately with the cases d ° 2, d † 2 and d = 2.
Throughout we will only consider a, b, x P (0, 8) subject to 0 † a † x † b † 8.

Assume first d ° 2. Then fd(b) Ñ 0 as b Ñ 8. Using (16.25) and continuity of
measure we then get

Px(ta † 8) = lim
bÑ8

Px(ta † tb) =
fd(x)
fd(a)

(16.26)

As fd(a) Ñ 8 as a Ó 0, this implies

lim
aÓ0

Px(ta † 8) = 0 (16.27)

Picking a subsequence tanun•1 with an Ó 0 such that Px(tan † 8) § 2´n, the Borel-
Cantelli lemma gives P(tan † 8 i.o(n)) = 0 proving inft•0 Xt ° 0 a.s. In particular,
t0 = 8 a.s. and, since ta = 8 for a † inft•0 Xt, also that tb † 8 a.s. for all b ° x, thanks
to (16.11). This proves (16.21).

Next let us consider the cases d † 2. Then fd(a) Ñ 0 as a Ó 0 and, since

t0 = lim
aÓ0

ta (16.28)

by continuity of X, we have

Px(t0 † tb) = lim
aÓ0

Px(ta † tb) = 1 ´
fd(x)
fd(b)

(16.29)

Taking b Ñ 8 while noting that, in this case, fd(b) Ñ 8 as b Ñ 8 shows

Px(t0 † 8) = 1 (16.30)

But then we must have supt•0 Xt † 8 by continuity of X, proving (16.22).
Turning to the case d = 2, here we note that here

Px(ta † tb) =
log b ´ log x
log b ´ log a

(16.31)

The observation (16.25) then gives

Px(ta † 8) = lim
bÑ8

Px(ta † tb) = 1 (16.32)

and thus also
Px(tb = 8) § lim

aÓ0
Px(ta † tb) = 0 (16.33)

It follows that tc † 8 Px-a.s. for each c P (0, 8) regardless of its relation to x. In particu-
lar, X is unbounded a.s. which forces t0 = 8 a.s. ⇤

We note that the limes superior in (16.21) can be replaced by actual limit. This is not the
case in (16.24).
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Thanks to fact that the radial process of d-dimensional standard Brownian motion is
a d-dimensional Bessel process, Theorem 16.5 now gives:

Corollary 16.6 (Recurrence/transience of Brownian motion) For d-dimensional standard
Brownian motion B, the following holds:
(1) in d = 1, B is recurrent to points, meaning that

tBt : t • 0u = R a.s. (16.34)

(2) in d = 2, B is not recurrent to points but is recurrent to open balls, meaning that

@x P R2 r t0u : P(Dt • 0 : Bt = x) = 0 (16.35)

yet
tBt : t • 0u is dense in R2 a.s. (16.36)

(3) in d • 3, B is not even recurrent to open balls, meaning that

@x P R3 r t0u : inf
t•0

|Bt ´ x| ° 0 a.s. (16.37)

Notice that the case d = 2 is formally distinct from that of two-dimensional simple
random walk, which is recurrent to points even in d = 2. The conclusion (16.35) also
implies that

l
⇣

tBt : t • 0u
�
= 0 a.s. (16.38)

by a simple Fubini-Tonelli based argument relying on joint measurability of B. The
Brownian path is thus dense in R2 yet of vanishing Lebesgue measure.

For the Bessel process, we in turn get:

Corollary 16.7 For any d-dimensional Bessel process started from x ° 0,

d • 2 ñ t0 = 8 a.s. (16.39)

and
d † 2 ñ t0 † 8 a.s. (16.40)

An obvious technical advantage of the cases with d • 2 is that the stochastic differ-
ential equation (16.4) applies to all times. The cases d † 2 will serve as an example of a
solution to a stochastic differential equation that hits a singularity in finite time a.s.

We leave it to the reader to check that Corollaries 16.6–16.7 indeed follow from the
conclusions of Theorem 16.5.

Further reading: Karatzas-Shreve, Section 3.3C
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