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15. TIME CHANGE TO BROWNIAN MOTION

In this lecture we push Theorem 14.6 further by effectively removing the assumption
that the quadratic variation process at time t equals t. This requires performing a time
change which will become one of our standard tools in solving stochastic differential
equations. The principal result is as follows:

Theorem 15.1 (Time change to Brownian motion) Let X be a continuous process such that,
for some Y P V

loc and each t • 0,

Xt =
ª t

0
YsdBs (15.1)

Assume that ª 8

0
Y2

s ds = 8 (15.2)

and, for each t • 0, set

T(t) := inf
!

u • 0 :
ª u

0
Y2

s ds • t
)

(15.3)

Then T(t) is a stopping time with T(t) Ñ 8 as t Ñ 8. Moreover, tXT(t) : t • 0u is a standard
Brownian motion, modulo a change on a null set.

Observe that (15.2) ensures that T(t) is finite for all t • 0. Thanks to the continuity of
u fiÑ

≥u
0 Y2

s ds implied by Y P V
loc, we thus have

@t • 0 :
ª T(t)

0
Y2

s ds = t (15.4)

We remark that one could as well define T(t) for t ° 0 by

sup
!

u • 0 :
ª u

0
Y2

s ds † t
)

(15.5)

which (for t ° 0) yields the same quantity as in (15.3) thanks to (15.4). The formula (15.3)
is better suited because it also gives T(0) = 0 which for the definition via (15.5) had to
be assumed separately. As noted as well, writing “§” instead of “†” in (15.5) (or vice
versa in (15.3)) would lead to an optional time which we could still work with but only
assuming that the underlying filtration is right continuous.

15.1 Continuous time martingales and stopping times.

The proof of Theorem 15.1 is based on the theory of continuous martingales. We will
thus start reviewing the necessary facts emphasizing, particularly, the aspects arising
from the continuum nature of the index set. The reader should perhaps start by re-
reading the definition of a continuous martingale (Definition 9.1) and a stopping time
(Definition 10.2). Next we put forward:

Definition 15.2 Let T be a stopping time for filtration tFtut•0. An event in

FT :=
!

A P F :
�
@t • 0 : A X tT § tu P Ft

�)
(15.6)
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is then said to be measurable by the stopping time T.

In order to avoid confusion, we point out that FT is not to be read as Ft|t=T — which
is a random element of the filtration. Rather, FT is a collection of sets determined by the
random variable T. We now observe:

Lemma 15.3 For any stopping times T and S of filtration tFtut•0,

(1) FT (and FS) is a s-algebra and T is FT-measurable.,
(2) FT X FS = FT^S and so, in particular,

S § T ñ FS Ñ FT (15.7)

Proof. (1) We readily check that FT is closed under countable unions. That W P FT
and FT is closed under complements follows from T being a stopping time. Hence FT
is a s-algebra. From

tT § uu X tT § tu = tT § u ^ tu P Fu^t Ñ Ft (15.8)

we get tT § uu P FT for each u • 0. As closed half-infinite intervals generate all Borel
sets, T is FT-measurable. We leave the proof of (2) to a homework exercise. ⇤

Our next point is to look at X evaluated at the stopping time T. This amounts to the
consideration of the function (XT)(w) := XT(w)(w) which makes sense (unless we have
an interpretation of X8) provided T is finite. The question we are interested in is under
what conditions besides X being adapted to a filtration tFtut•0 is XT an FT-measurable
random variable. A sufficient condition for this is the subject of:

Lemma 15.4 Let T be a finite stopping time for a filtration tFtut•0 and X a process that is
adapted to tFtut•0. If X has left-continuous paths, then XT is FT-measurable.

We leave the proof of this lemma to homework while noting that the statement holds
also for X with right continuous paths. If we wish to go beyond the one-sided continu-
ous cases, a suitable notion of regularity of X to assume is the following:

Definition 15.5 We say that (R-valued) family X = tXt : t • 0u is progressively mea-
surable if, for each t • 0 and each A P B(R),

 
(s, w) P [0, t] ˆ W : Xs(w) P A

(
P B([0, t]) b Ft (15.9)

As can be checked, a progressively measurable process is automatically jointly mea-
surable but the converse is not true. One way to prove Lemma 15.4 is by first proving
that processes with left continuous paths are progressively measurable:

Lemma 15.6 Suppose X is progressively measurable. Then XT is FT-measurable for each finite
stopping time T.

Proof. First we note that, for each t • 0 and each A P B(R),

X´1
T (A) X tT § tu = X´1

T^t(A) X tT § tu (15.10)
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and so to show that this set is in Ft it suffices to show that XT^t is Ft/B(R)-measurable.
For this we write XT^t = f ˝ g where f : [0, t] ˆ W Ñ R is the B([0, t]) b Ft/B(R)-
measurable map f (s, w) := Xs(w) — this is where progressive measurability enters —
while g : W Ñ [0, t] ˆ W is the Ft/B([0, t]) b Ft-measurable map g(w) := (T(w) ^ s, w)
— which by looking at product events reduces to the fact that T ^ t is Ft-measurable, as
follows from, e.g., Lemma 15.3. ⇤

We note that progressive measurability is apparently weaker than just joint measura-
bility although, thanks to a theorem of K.L. Chung and J. Doob from 1965, an adapted,
jointly measurable process admits a progressively measurable version. See Section 1.1
of Karatzas and Shreve for further discussion of this.

15.2 Optional Stopping/Sampling Theorem.

Returning to our main line of our discussion, the key result we need for the proof of
Theorem 15.1 is then:

Theorem 15.7 (Optional Stopping/Sampling Theorem) Let M = tMt : t • 0u be a
continuous martingale with respect to a filtration tFtut•0 and let T and S be stopping times
for tFtut•0 such that S § T. If

(1) either T is bounded, meaning T P L8, or
(2) T † 8 a.s. and tMt : t • 0u is uniformly integrable,

then MT P L1 and
E(MT|FS) = MS a.s. (15.11)

In particular, EMT = EMS = EM0.

Before we get to the proof note that the purpose of the Optional Stoping Theorem is
to extend the equality E(Mt) = E(M0) from fixed (deterministic) t to a stopping time T.
This requires certain conditions that, generally, trade assumptions on the stopping times
against those on the martingale. Conditions (1) and (2) above match those used in dis-
crete time setting; the other condition invoked in discrete time setting — namely, the
stopping time has finite moment and the increments of the martingale are bounded —
has no direct counterpart because being uniformly Lipschitz forces the martingale to be
constant by Lemma 12.8. A version adapted to quadratic variation nonetheless exists;
see the upcoming homework assignment.

The qualifier “sampling” in the title of Theorem 15.7 refers to the extension of con-
ditional expectation version @s § t : E(Mt|Fs) = Ms a.s. of the martingale property to
random (stopping) times S § T.
Proof of Theorem 15.7. The strategy of the proof in both cases is to first assume that T is
bounded, prove the result for T and S discrete valued, then take limits to extend to the
case of continuum-valued S and T (still with T bounded) and, to get also (2), remove the
boundedness assumption by another limit.

Let us start by treating the cases when

DK P (0, 8) : S § T § K (15.12)
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Assuming first that S, T takes values in a finite set S Ñ [0, K], note that

|MT| §

ÿ

tPS
|Mt| (15.13)

implies MT P L1, while the fact that tT = tu = tT § tu r
î

t1PSX[0,t)tT § t1
u gives

@A P FT @t P S : A X tT = tu P Ft ^ tT = tu P Ft (15.14)

Using that Mt = E(MK|Ft) a.s. for each t P S, for any A P FT we then get

E(MT1A) =
ÿ

tPS
E(Mt1AXtT=tu) =

ÿ

tPS
E(MK1AXtT=tu) = E(MK1A). (15.15)

As MT is FT-measurable (the full power of Lemma 15.4 is not required for this) hereby
we conclude

MT = E(MK|FT) a.s. and, similarly, MS = E(MK|FS) a.s. (15.16)

For S § T we have FS Ñ FT by (15.7) and so (15.11) follows by the “smaller always
wins” principle for conditional expectation.

Assume now that S, T are general stopping times still subject to (15.12). Define, for
each integer N • 1, their approximations

TN := 2´Nr2NTs ^ SN := 2´Nr2NSs (15.17)

Then TN and SN are discrete-valued stopping times with SN § TN § K + 1 and so, by
the previous reasoning,

MTN = E(MK+1|FTN ) a.s. ^ MSN = E(MK+1|FSN ) (15.18)

Let A P FS. Then S § SN § TN implies A P FSN Ñ FTN and so the definition of
conditional expectation shows

E(MTN 1A) = E(MK+11A) = E(MSN 1A) (15.19)

Thanks to the continuity of M and the fact that TN Ó T and SN Ó S, we have MTN Ñ

MT and MSN Ñ MS pointwise. The formulas (15.19) in turn show that the families
tMTN : N • 1u and tMSN : N • 1u are uniformly integrable. This proves MT, MS P L1

and permits passing the N Ñ 8 limit inside the expectations in (15.19) to get

@A P FS : E(MT1A) = E(MS1A) (15.20)

Since MS is FS-measurable by Lemma 15.4, we have (15.11) assuming (15.12).
The above already proves (1). We leave the proof of (2), which also requires the Mar-

tingale Convergence Theorem to furnish the “terminal point” M8 of the martingale M,
to a homework exercise. ⇤

Note that the proof works fine even for just right-continuous martingales although,
in that case, we need to supply a version of Lemma 15.4 for right-continuous processes
to ensure FS-measurability of MS. It is a convenient fact that, for martingales, the right-
continuity is more or less automatic. Indeed, a.e. path of a martingale admits left and
right limits at all points and (assuming F0 contains all P-null sets) the right-limit process
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remains a martingale with respect to the right-continuous version of the filtration. See
Section 1.3A of Karatzas and Shreve.

15.3 Proof of time change to Brownian motion.

We are now ready to move to:
Proof of Theorem 15.1. Consider the process (15.1) and let T(t) be as in (15.3). To see
that T(t) is a stopping time note that, by (15.4),

 
T(t) ° u

(
=

!ª u

0
Y2

s ds † t
)

. (15.21)

As is checked with the help of the Monotone Class Theorem, the integral is Fu-measurable
and so tT(t) § uu P Fu as desired. That T(t) † 8 a.s. for all t • 0 follows from (15.2).

Next fix l P R and consider the process

Mu := exp
!

ilXT(t)^u +
l2

2
xXyT(t)^u

)
(15.22)

Since

XT(t)^u =
ª u

0
Ys1tT(t)°sudBs ^ xXyT(t)^u =

ª u

0
Y2

s 1tT(t)°suds (15.23)

the Itô formula shows, once again, that M is a local martingale. Since xXyT(t)^u § t by
definition of T(t), we get that M is also bounded in the sense that supu•0 |Mu| P L8 for
each t • 0. Lemma 14.7 then shows that M is a martingale.

Since T(t) † 8 a.s., the Optional Sampling Theorem (namely, Theorem 15.7(2) ap-
plied separately to the real and imaginary part of M) gives

@0 § s † t : E
�

MT(t)
ˇ̌
FT(s)

�
= MT(s) a.s. (15.24)

But xXyT(t) = t and so we write this as

@0 § s † t : E
⇣

eil(XT(t)´XT(s))
ˇ̌
ˇFT(s)

⌘
= e´ l2

2 (t´s) a.s. (15.25)

where we also used that XT(s) is FT(s)-measurable. Using the same argument in the proof
of Theorem 14.6 we conclude that the process tXT(t) : t • 0u has independent increments
with XT(t) ´ XT(s) = N (0, t ´ s).

In order to show that XT(¨) is a standard Brownian motion modulo a change on a null
set, we need to prove that t fiÑ XT(t) is continuous a.s. For this we first note that, since
tXT(t) : t • 0u has the same finite-dimensional distributions as the standard Brownian
motion, we have

t fiÑ XT(t) is locally uniformly continuous on Q X [0, 8) a.s. (15.26)

To get continuity on (0, 8) it then suffices to observe that

t fiÑ T(t) is left continuous on (0, 8) (15.27)

which is gleaned from the fact that the set in (15.21) is open. In order to get continuity
at time t = 0 a.s. we note that, by the fact that the integral representation XT(t)^u =
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≥u
0 Ys1tT(t)°uudBs a.s. along with Itô isometry ensure that

XT(t)^u P L2 with E
�
X2

T(t)^u
�
= E

�
xXyT(t)^u

�
§ t (15.28)

By above continuity argument and the Optional Sampling Theorem we conclude that
tXT(t)^u : t ° 0u is a continuous L2-martingale for the filtration tFT(t) : t ° 0u. Doob’s
L2-inequality (see Lemma 9.3) still applies (ignoring the value at t = 0) and shows, for
each t ° 0 and each l ° 0,

P
⇣

sup
0†s§t

|XT(s)| ° l
⌘
= lim

uÑ8 P
⇣

sup
0†s§t

|XT(s)^u| ° l
⌘

§ lim sup
uÑ8

1
l2 E

�
X2

T(t)^u
�

§
t

l2 ,
(15.29)

where the first equality follows from the fact that XT(s)^u = XT(s) for all s P (0, t] on
tT(t) § uu and that P(T(t) § u) Ñ 1 as u Ñ 8. Taking t := 1/n´4 and l := 1/n and
invoking the Borel-Cantelli lemma shows

XT(t)
a.s.

›Ñ
tÓ0

0 (15.30)

As T(0) = 0 and so XT(0) = 0 by assumed continuity of X, we conclude that, away
from the null sets in (15.26) and (15.30), t fiÑ XT(t) is continuous on [0, 8) and is thus a
standard Brownian motion. ⇤

We remark that the care we treat continuity in the above proof is necessary because
t fiÑ T(t) fails to be continuous whenever Y vanishes a.s. on a non-degenerate interval
of times. While the above proof is cast for X given as a single stochastic integral, a
completely analogous argument works for X taking the form (14.20). Indeed, all we
need to do is to replace the integral in (15.3) by the sum in (14.21).

15.4 Extensions.

The setting of Theorem 15.1 contains two assumptions that are sometimes worthy of
relaxing. The first one is that Y P V

loc where we may not want to assume that
≥t

0 Y2
s ds is

always finite for all t • 0; meaning that

t := inf
!

t • 0 :
ª t

0
Y2

s ds = 8

)
(15.31)

is finite with positive probability. In this case T(t) Ñ 8 as t Ò t and the above proof
still works, except that only the portion of X corresponding to the interval of times for
which the quadratic variation is finite is used.

Concerning the natural question what happens with t fiÑ XT(t) as t Ò t, modest local-
ization arguments applied on top of the conclusion of Theorem 15.1 show:

Theorem 15.8 (Blow up in finite time) Suppose Y is an adapted and jointly measurable
process such that t from (15.31) obeys P(t ° 0) = 1 yet possibly P(t † 8) ° 0. Then the
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limit in (10.4) exists for all t P [0, t) and defines a continuous process tXt : t P [0, t)u such that

Xt =
ª t

0
YsdBs a.s. on tt ° tu (15.32)

The process X does not extend continuously to t = t when t † 8 as we have

lim sup
tÒt

Xt = +8 ^ lim inf
tÒt

Xt = ´8 a.s. (15.33)

Part (15.32) allows us to work with the stochastic integral up to the time when the
associated quadratic variation process diverges. Part (15.32) in turn shows that this di-
vergence is a fundamental obstruction as no “improper” integral can be defined at the
point of divergence. We leave the proof of Theorem 15.8 to homework.

Another point where the setting of Theorem 15.8 may need to be relaxed is the as-
sumption (15.2). This ensures that T(t) † 8 for each t • 0 thus resulting in XT(t) being
defined for all t • 0. In this case we get the following:

Theorem 15.9 (Time change with finite time horizon) Consider a probability space sup-
porting a Brownian motion B = tBt : t • 0u and a Brownian filtration tFtut•0. Let t‹ be a
positive stopping time for tFtut•0 and X = tXt : t † t‹

u a family of random variables such that
t fiÑ Xt is continuous on its domain and, for some Y P V

loc and all t • 0,

Xt =
ª t

0
YsdBs a.s. on tt‹

° tu (15.34)

Assume the probability space supports another standard Brownian motion rB = trBt : t • 0u that
is independent of X, Y and B. Consider the random variable

T‹ :=
ª t‹

0
Y2

s ds (15.35)

and, for t P [0, T‹), let T(t) be defined by (15.3). Then

X8 := lim
tÒT‹ XT(t) exists a.s. on tT‹

† 8u (15.36)

and the process W = tWt : t • 0u defined by

Wt :=

#
XT(t), for t † T‹,
X8 + rBt ´ rBT‹ , for t • T‹,

(15.37)

is a standard Brownian motion, modulo a change on a null set.

We again leave this to a (potential) homework exercise as it requires, mostly, steps
and tools that have been used above. We remark that all these results can be proved
for general continuous local martingales, using the generalization of the Itô integral that
replaces the standard Brownian motion by a continuous local martingale.

Further reading: Karatzas-Shreve, Section 3.4B
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