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14. PRODUCT RULE AND LÉVY’S CHARACTERIZATION OF BROWNIAN MOTION

We will now give two interesting consequences of the Itô formula.

14.1 Product rule and the Fisk-Stratonovich integral.

Noting that this formula is basically a statement of the chain rule, we now examine the
validity of the product rule.

Theorem 14.1 (Product rule) Let X and rX be semimartingales (under the same Brownian
filtration). Then so is X rX = tXt rXt : t • 0u and

d(X rX)t = rX dXt + Xtd rXt + dxX, rXyt (14.1)

where txX, rXyt : t • 0u is the cross-variation process

xX, rXyt :=
1
4

xX + rXyt ´
1
4

xX ´ rXyt (14.2)

Proof. Using the Itô formula in differential notation (in which you read just the top signs
or the bottom signs)

d(Xt ˘ rXt)
2 = 2

h
Xt dXt + rXt d rXt ˘ ( rXt dXt + Xt d rXt)

i
+ dxX ˘ rXyt (14.3)

The claim now follows from 4Xt rXt = (Xt + rXt)2
´ (Xt ´ rXt)2. ⇤

The cross-variation process is a natural extension of the quadratic variation process.
Indeed, from (14.2) and homogeneity of X fiÑ xXy we get

xXyt = xX, Xyt. (14.4)

While we chose to define the cross variation directly via quadratic variation, its actual
meaning is traced back to:

Lemma 14.2 Let X and rX be semimartingales. Then for any t • 0 and any sequence of
partitions tPnun•1 of [0, t], where Pn = t0 = t0 † t1 † ¨ ¨ ¨ † tm(n) = tu, if }Pn} Ñ 0 then

m(n)ÿ

i=1

( rXti ´ rXti´1)(Xti ´ Xti´1)
P

›Ñ
nÑ8 x rX, Xyt (14.5)

Proof. Writing the left-hand side as 1
4 [V

(2)
t (X + rX, Pn) ´ V(2)

t (X + rX, Pn)], the claim
follows from Theorem 12.5. ⇤

The upshot of Theorem 14.1 is that, besides the chain rule failing for the Itô integral,
the integration by parts formula fails as well. This is seen from

ª t

0
rXs dXs = Xt rXt ´ X0 rX0 ´

ª t

0
Xs d rXs ´ xX, rXyt (14.6)

This can be mended by coming up with a different version of the integral:
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Definition 14.3 Let X and rX be semimartingales. Then

ª t

0
rXs ˝ dXs :=

ª t

0
rXs dXs +

1
2

xX, rXyt (14.7)

is the Fisk-Stratonovich integral.

We then have:

Lemma 14.4 Let X be a semimartingale. Then for all t • 0 and all f P C1(R),

x f ˝ X, Xyt =
ª t

0
f 1(Xt)dxXyt (14.8)

In particular, the chain rule

f (Xt) = f (X0) +
ª t

0
f (Xs) ˝ dXs (14.9)

holds for all f P C2(R) and all t • 0. In addition, for any semimartingales X and rX we also
have the integration-by-parts formula

ª t

0
rXs ˝ dXs = Xt rXt ´ X0 rX0 ´

ª t

0
Xs ˝ d rXs (14.10)

We leave the short but instructive proof to homework. Thanks to (14.8), the integral
(14.7) subsumes that introduced in (6.41). One can also wonder if there is an analogue
of Lemma 6.8 which interprets the Stratonovich integral as the limit of Riemann sums
under the midpoint rule. This comes in:

Lemma 14.5 Let X and rX be semimartingales. Then for any t • 0 and any sequence of
partitions tPnu of [0, t], where Pn = t0 = t0 † t1 † ¨ ¨ ¨ † tm(n) = tu, if }Pn} Ñ 0 then

m(n)ÿ

i=1

rXti + rXti´1

2
(Xti ´ Xti´1)

P
›Ñ
nÑ8

ª t

0
rXs ˝ dXt (14.11)

Proof. Subtracting half of the left-hand side of (14.5) from the quantity on the left of
(14.11) yields the expression

∞m(n)
i=1

rXti´1(Xti ´ Xti´1). Our aim it to show that, similarly
as in Lemma 11.8,

m(n)ÿ

i=1

rXti´1(Xti ´ Xti´1)
P

›Ñ
nÑ8

ª t

0
rXs dXt (14.12)

Using a localization argument (whose details we leave to the reader), we may assume
that rX is bounded, say

sup
s§t

| rXs| § K (14.13)

for some deterministic K ° 0.
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We start by invoking Lemma 13.3 to write the difference of the Riemann sum and the
integral on the right of (14.12) as

m(n)ÿ

i=1

ª ti

ti´1

� rXti´1 ´ rXs)dXs (14.14)

For X of the form dXt = Utdt + YtdBt this equals

m(n)ÿ

i=1

ª ti

ti´1

( rXti´1 ´ rXs)Usds +
m(n)ÿ

i=1

ª ti

ti´1

( rXti´1 ´ rXs)Ys dBs (14.15)

The first sum is bounded as
ˇ̌
ˇ

m(n)ÿ

i=1

ª ti

ti´1

( rXti´1 ´ rXs)Usds
ˇ̌
ˇ § oscX

�
[0, t], }P}

� ª t

0
|Us|ds (14.16)

which tends to zero pointwise a.s. thanks to the assumption that the integral is finite a.s.
The second sum in (14.15) can be written as

m(n)ÿ

i=1

ª ti

ti´1

( rXti´1 ´ rXs)Ys dBs =
ª t

0
rZ(n)

s Ys dBs (14.17)

where

Z(n)
s :=

m(n)ÿ

i=1

( rXti´1 ´ rXs)1[ti´1,ti)(s) (14.18)

Thanks to the assumed continuity, Z(n)
s Ñ 0 as n Ñ 8. Using that and

≥t
0 Y2

s ds † 8 a.s.
and that Z(n)’s are uniformly bounded by (14.13), the Bounded Convergence Theorem
gives

≥t
0[Z

(n)
s Ys]2ds Ñ 0 a.s. as n Ñ 8. Lemma 11.7 then implies

ª t

0
rZ(n)

s Ys dBs
P

›Ñ
nÑ8 0 (14.19)

This proves (14.12); Lemma 14.2 and (14.7) then give (14.11). ⇤

14.2 Lévy characterization of Brownian motion.

Another elegant application of the Itô formula is the characterization (proved by P. Lévy
in 1949) of the standard Brownian motion as a continuous local martingale M with
xMyt = t for all t • 0. While the results works for all continuous local martingales,
we only prove one for the local martingales arising from stochastic integrals.

Theorem 14.6 Let B(1), . . . , B(d) be independent standard Brownian motions and let X be a
continuous process such that, for each t • 0,

Xt =
dÿ

k=1

ª t

0
Y(k)

s dB(k)
s (14.20)
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for some Y(1), . . . , Y(d)
P V

loc (defined via a common Brownian filtration). Then

@t • 0 : xXyt :=
dÿ

k=1

ª t

0
[Y(k)

s ]2 ds = t (14.21)

implies that X is a standard Brownian motion.

We note that, while the process txXyt : t • 0u can be defined intrinsically either by
a limit of second variations or via the aforementioned Doob-Meyer decomposition, in
(14.21) is simply designates the process that is naturally associated with the Itô terms
arising for (14.20) in Theorem 13.5.
Proof of Theorem 14.6. Let tFtut•0 be the Brownian filtration under which the integrals in
(14.20) are defined. For any l P R, let

Zt := eilXt+ l2
2 t (14.22)

Just as in (13.39), under (14.21) the Itô formula shows

dZt = ilZt dXt +
l2

2
Ztdt +

1
2
(il)2ZtdxXyt

=
dÿ

k=1

ilZtY
(k)
s dB(k)

s

(14.23)

which means that Z is a local martingale. We now claim that Z is an actual martingale.
We prove this in a bit more generality via:

Lemma 14.7 Let M be a local martingale such that

@t • 0 : sup
s§t

|Ms| P L8 (14.24)

Then M is a martingale.

Postponing the proof of this lemma until we finish that of Theorem 14.6, we note that
|Zt| § e

l2
2 t and so the conclusion of the lemma is available. The martingale property

of Z then gives

@t • s • 0 : E
�
eilXt+ l2

2 t ˇ̌
Fs

�
= eilXs+ l2

2 s a.s. (14.25)
which by the fact that Xs is Fs-measurable transforms into

@t • s • 0 : E
�
eil(Xt´Xs)

ˇ̌
Fs

�
= e´ l2

2 (t´s) a.s. (14.26)

Using this inductively we get, for any 0 = t0 † t1 † ¨ ¨ ¨ † tn and any l1, . . . , ln P R,

E
✓

exp
!

i
nÿ

k=1

lk(Xtk ´ Xtk´1)
)◆

= exp
!

´
1
2

nÿ

k=1

l2
k(tk ´ tk´1)

)
(14.27)

From the Cramér-Wold Theorem we then conclude that X has independent increments
with Xt ´ Xs = N (0, t ´ s) for all t • s • 0. Since X has continuous paths, it is a standard
Brownian motion. ⇤
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It remains to give:
Proof of Lemma 14.7. The local martingale property means that, for a non-decreasing
sequence tTnun•1 of stopping times with Tn Ñ 8 a.s. the process tMTn^t : t • 0u is a
martingale for each n • 1. In particular, for each t • s • 0 we have

E(MTn^t|Fs) = MTn^s a.s. (14.28)

Taking n Ñ 8 we get MTn^s Ñ Ms a.s. so the issue is to take the same limit inside the
conditional expectation. Here we use that (14.24) implies

E|MTn^t ´ Mt| ›Ñ
nÑ8 0 (14.29)

by the Bounded Convergence Theorem and so MTn^t Ñ Mt in L1. The fact that the
conditional expectation is an L1-contraction then gives E(MTn^t|Fs) Ñ E(Mt|Fs) in L1

and thus
@t • s • 0 : E(Mt|Fs) = Ms a.s. (14.30)

thus proving that M is indeed a martingale. ⇤
We remark that, while the boundedness assumption (14.24) is sufficient for the desired

conclusion, it is definitely not required. On the other hand, as we will show a bit later,
plain integrability of Ms, or even uniformly integrability of tMs : s § tu, is not sufficient
either. Indeed, in the absence of further information on the stopping times tTnun•1,
(14.28) seems to need that tMT1 : T1 stopping time with T1

§ tu is uniformly integrable.
In light of the remark after Theorem 13.5, the assumption that the Brownian motions

in (14.20) are independent is actually not necessary. In fact, as noted above, the conclu-
sion holds for all continuous local martingales.

Further reading: Sections 3.3AB of Karatzas-Shreve
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