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13. ITÔ FORMULA FOR SEMIMARTINGALES

We are now in a position to generalize the Itô formula for C2-functions of standard Brow-
nian motion to similar functions of semimartingales. For this we first extend the notion
of the stochastic integrals to those with respect to semimartingales.

Definition 13.1 Let tXt : t • 0u be a semimartingale of the form dXt = Utdt + YtdBt.

For any t • 0 and any tZs : s • 0u which is adapted, jointly measurable and obeys

ª t

0
|Zs||Us|ds † 8 ^

ª t

0
|Zs|

2Y2
s ds † 8 a.s. (13.1)

we then define ª t

0
ZsdXs :=

ª t

0
ZsUsds +

ª t

0
ZsYsdBs (13.2)

Note that if Z has continuous paths, the function s fiÑ Zs is locally bounded and condi-
tions (13.1) are thus ensured by those entering the designation of X as a semimartingale.
Note also that, in light of Corollary 12.9, the representation of a semimartingale X is
unique up to equivalence (12.30) and the integrals in (13.1) and those on the right of
(13.2) are the same for any representatives of tUs : s • 0u and tYs : s • 0u. The integral≥t

0 ZsdXs is thus independent of the choice of the representatives as well.
We now claim:

Theorem 13.2 (Itô formula for semimartingales) Let tXt : t • 0u be a semimartingale.
Then for all f P C2(R) also t f (Xt) : t • 0u is a semimartingale and for all t • 0,

f (Xt) = f (X0) +
ª t

0
f 1(Xs)dXs +

1
2

ª t

0
f 2(Xs)dxXys a.s. (13.3)

where the first integral is in the sense of Definition 13.1 while the second integral is an ordinary
Stieltjes integral. Both integrals exist and are finite a.s.

In order to make the statement completely explicit, assume that X has the differential
form dXt = Utdt + YtdBt. Then (13.3) means that, for each t • 0, a.s.,

f (Xt) = f (X0) +
ª t

0
f 1(Xs)Usds +

ª t

0
f 1(Xs)YsdBs +

1
2

ª t

0
f 2(Xs)Y2

s ds (13.4)

We will naturally write (13.3) in differential form as

d f (Xt) = f 1(Xt)dXt +
1
2

f 2(Xt)dxXyt (13.5)

For Xt = Bt, where B is the standard Brownian motion, we have xByt = t by Proposi-
tion 6.2 and so Theorem 13.2 subsumes Theorem 11.9.
Proof of Theorem 13.2. Assuming X takes the form dXt = Utdt + YtdBt denote

@u • 0 : Au :=
ª u

0
Usds ^ Mu :=

ª u

0
YsdBs (13.6)

The proof follows closely the proof of Theorem 11.9 with two important differences.
First, localization will be done first as it ensures a number of technical conditions that
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help in the rest of the proof. Second, the reduction of the quadratic terms (Xti ´ Xti´1)
2

to xXyti ´ xXyti´1 with their difference now controlled not via a fourth moment (which
may not exist) but rather with the help of truncations induced in the localization step.

STEP 1 (localization): Given K • 0, consider the quantity

TK := inf

$
’&

’%
t • 0 :

|Xt| • K _ | f 1(Xt)| • K _ | f 2(Xt)| • K

_ |Mt| • K _

ª t

0
|Us|ds • K _

ª t

0
Y2

s ds • K

,
/.

/-
(13.7)

Since all t-dependent quantities are measurable, this is a stopping time. Moreover, by
continuity of X, f 1

˝ X, f 2
˝ X and the assumption in Definition 12.1, TK Ñ 8 a.s. as

K Ñ 8. On tTK ° tu we have @s P [0, t] : Xs = XTK^s as well as
ª t

0
Us ds =

ª t

0
Us1tTK°suds ^

ª t

0
Ys dBs =

ª t

0
Ys1tTK°sudBs (13.8)

and thus

XTK^s = X0 +
ª t

0
Us1tTK°suds +

ª t

0
Ys1tTK°sudBs (13.9)

Working with the stopped process tXTK^s : s • 0u instead of tXs : s • 0u, it thus suffices
to prove the claim under the assumptions that, for all t • 0,

sup
s§t

|Xs| § K ^ sup
s§t

|Ms| § K ^ sup
s§t

ˇ̌
f 1(Xs)

ˇ̌
§ K ^ sup

s§t

ˇ̌
f 2(Xs)

ˇ̌
§ K (13.10)

and
ª t

0
|Us|ds § K ^

ª t

0
Y2

s ds § K a.s. (13.11)

This is what we will assume in the rest of the proof.

STEP 2 (Taylor’s theorem): Fix t • 0 and a partition P = t0 = t0 † t1 † ¨ ¨ ¨ † tn = tu.
Then the same derivation as that leading to (6.20) gives

f (Xt) ´ f (X0) =
nÿ

i=1

⇥
f (Xti) ´ f (Xti´1)

⇤

=
nÿ

i=1

f 1(Xti´1)(Xti ´ Xti´1) +
1
2

nÿ

i=1

f 2(Xti´1)(Xti ´ Xti´1)
2

+
nÿ

i=1

✓ª 1

0

h
f 2�qXti´1 + (1 ´ q)Xti

�
´ f 2(Xti´1)

i
(1 ´ q)dq

◆
(Xti ´ Xti´1)

2

(13.12)

We then write (13.12) as

f (Xt) ´ f (X0) = J(1)t (P) + ¨ ¨ ¨ + J(5)t (P) (13.13)
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where

J(1)t (P) :=
nÿ

i=1

f 1(Xti´1)(Xti ´ Xti´1)

J(2)t (P) :=
1
2

nÿ

i=1

f 2(Xti´1)(xXyti ´ xXyti´1)

J(3)t (P) :=
1
2

nÿ

i=1

f 2(Xti´1)
⇣
(Mti ´ Mti´1)

2
´ (xXyti ´ xXyti´1)

⌘

J(4)t (P) :=
1
2

nÿ

i=1

f 2(Xti´1)
⇣
(Xti ´ Xti´1)

2
´ (Mti ´ Mti´1)

2
⌘

(13.14)

and

J(5)t (P) :=
nÿ

i=1

✓ª 1

0

h
f 2�qXti´1 + (1 ´ q)Xti

�
´ f 2(Xti´1)

i
(1 ´ q)dq

◆
(Xti ´ Xti´1)

2 (13.15)

Our aim is to show that, assuming (13.10–13.11), J(1)t (P) tends in probability to the first
integral on the right of (13.3) while J(2)t (P) tends to the second integral, as }P} Ñ 0.
Then we will prove that the remaining terms vanish in probability in that limit.

STEP 3 (Limit of J(1)t (P)): Using the analogue of (11.7) to define
≥t

u ZsdXs, we start by:

Lemma 13.3 For X a semimartingale and Z a process such that
≥u

0 ZsdXs exists for all u § t,
for all t • u • 0 and any random variable W,

W is Fu-measurable ñ W
ª t

u
Zs dXs =

ª t

u
WZs dXs a.s. (13.16)

Leaving the simple proof of this fact to homework, we now note that for X such that
dXt = Utdt + YtBt this implies

ˇ̌
ˇ J(1)t (P) ´

ª t

0
f 1(Xs)dXs

ˇ̌
ˇ =

ˇ̌
ˇ

nÿ

i=1

ª ti

ti´1

�
f 1(Xti´1) ´ f 1(Xs)

�
dXs

ˇ̌
ˇ

§

nÿ

i=1

ª ti

ti´1

ˇ̌
f 1(Xti´1) ´ f 1(Xs)

ˇ̌
|Us|ds +

ˇ̌
ˇ

nÿ

i=1

ª ti

ti´1

�
f 1(Xti´1) ´ f 1(Xs)

�
YsdBs

ˇ̌
ˇ

(13.17)

For the first term on the right we get
nÿ

i=1

ª ti

ti´1

ˇ̌
f 1(Xti´1) ´ f 1(Xs)

ˇ̌
|Us|ds § osc f 1˝X

�
[0, t], }P}

� ª t

0
|Us|ds (13.18)

which tends to zero as }P} Ñ 0 by the assumption (13.11) and the fact that f 1
˝ X is

continuous. Thanks to the Itô isometry enabled by (13.11), the second moment of the
second term on the right of (13.17) equals the expectation of

nÿ

i=1

ª ti

ti´1

�
f 1(Xti´1) ´ f 1(Xs)

�2Y2
s ds (13.19)
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This quantity is bounded pathwise by osc f 1˝X([0, t], }P})2 ≥t
0 Y2

s ds. Since the oscillation
is at most 2K by (13.10) while the integral is less than K by (13.11), the Bounded Con-
vergence Theorem ensures that the second term on the right of (13.17) tends to zero in
probability as }P} Ñ 0. This proves

J(1)t (P) P
›Ñ

}P}Ñ0

ª t

0
f 1(Xs)dXs (13.20)

as anticipated.

STEP 4 (Limit of J(2)t (P)): Since t fiÑ xXyt is non-decreasing continuous while t fiÑ f 2(Xt)
is continuous, the standard criterion for the existence of the Stieltjes integral gives

J(2)t (P) ›Ñ
}P}Ñ0

1
2

ª t

0
f 2(Xs)dxXys (13.21)

where the limit is for every path of X.

STEP 5 (Limit of J(4)t (P)): Since Xt = Mt + At, for M and A as in (13.6), we can write

J(4)t (P) =
1
2

nÿ

i=1

f 2(Xti´1)(Ati ´ Ati´1)
2 +

nÿ

i=1

f 2(Xti´1)(Ati ´ Ati´1)(Mti ´ Mti´1) (13.22)

In light of (13.10), the first term on the right is bounded by (dropping 1/2 for brevity)

K V(2)
t (A, P) § K oscA

�
[0, t], }P}

�
V(1)

t (A, P) (13.23)

Since V(1)
t (A, P) §

≥t
0 |Us|ds § K, this tends to zero as }P} Ñ 0 in a pathwise sense.

The second term on the right is treated similarly; first we invoke the Cauchy-Schwarz
inequality along with (13.10) to bound it by the square root of

K2 V(2)
t (A, P)V(2)

t (M, P) (13.24)

Taking a sequence of partitions tPnun•1 with }Pn} Ñ 0, we have V(2)
t (M, Pn)

P
Ñ xMyt

by Theorem 12.5, while the remaining part of the expression tends to zero by the reason-
ing following (13.23). We conclude that

J(4)t (Pn)
P

›Ñ
}Pn}Ñ0

0 (13.25)

as anticipated.

STEP 6 (Limit of J(5)t (P)): Moving to the “Taylor remainder” term, here we note that, in
light of (13.10),

ˇ̌
J(5)t (P)

ˇ̌
§ osc f 2

⇣
[´K, K], oscX

�
[0, t], }P}

�⌘
V(2)

t (X, P) (13.26)

Note that, along any sequence tPnun•1 of partitions of [0, t] with }Pn} Ñ 0, the term
V(2)

t (X, Pn) converges in probability while the double oscillation tends to zero by conti-
nuity of f 2 and X. This shows

J(5)t (Pn)
P

›Ñ
}Pn}Ñ0

0 (13.27)
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This term thus does not contribute in the limit.
STEP 7 (Limit of J(3)t (P)): Addressing finally the term that is hardest to control, we note
that xXyt = xMyt and so

(Mti ´ Mti´1)
2

´ (xXyti ´ xXyti´1) (13.28)

is a martingale increment (see Lemma 12.7). Hence EJ(3)t (P) = 0 and

E
�

J(3)t (P)2� =
nÿ

i=1

E
✓

f 2(Xti´1)
2
⇣
(Mti ´ Mti´1)

2
´ (xXyti ´ xXyti´1)

⌘2
◆

§ 2K2E
⇣

V(4)
t (M, P) + V(2)

t
�
xXy, P

�⌘
(13.29)

where we used that (a ´ b)2
§ 2a2 + 2b2 along with the bound in (13.10) in the second

step. For the second term under expectation we note that

V(2)
t

�
xXy, P

�
§ oscxXy

�
[0, t], }P}

�
V(1)

t
�
xXy, P

�
§ K oscxXy

�
[0, t], }P}

�
(13.30)

where bound the first variation by the second integral in (13.11). Since xXy, and thus also
the oscillation in (13.30) is bounded, the expectation of this term tends to zero as }P} Ñ 0
by the Bounded Convergence Theorem.

Concerning the fourth-variation term in (13.29), here we similarly note that

V(4)
t (M, P) § oscM

�
[0, t], }P}

�2 V(2)
t (M, P) (13.31)

The oscillation is bounded by 2K thanks to (13.10) and it tends to zero as }P} Ñ 0 by
continuity of M. To get the same convergence under expectation, we need that, under
above assumptions,

!
V(2)

t (M, P) : P = partition of [0, t]
)

is uniformly integrable (13.32)

This follows from:

Lemma 13.4 Let tMt : t • 0u be a martingale such that |Mt| § K for all t • 0. Then for any
t • 0 and any partition P of [0, t],

E
�
V(2)

t (M, P)2�
§ 48K4 (13.33)

Postponing the proof of the lemma until after the present proof is completed, we con-
clude that EV(4)

t (M, P) Ñ 0 as }P} Ñ 0 and thus also J(3)t (P) P
Ñ 0 as }P} Ñ 0. Jointly

with (13.13), (13.20), (13.21), (13.25) and (13.27), this yields the desired claim. ⇤
It remains to give:

Proof of Lemma 13.4. Writing P = t0 = t0 † t1 † ¨ ¨ ¨ † tn = tu and denoting by tFtut•0
the filtration under which M is a martingale, we first note that, for each i = 1, . . . , n,

E
⇣ nÿ

j=i+1

(Mtj ´ Mtj´1)
2

ˇ̌
ˇFti

⌘
= E

�
(Mt ´ Mti)

2 ˇ̌
Fti

�
§ 4K2 (13.34)
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Similarly we note that

E
�
V(4)

t (M, P)
�

§ 4K2 E
�
V(2)

t (M, P)
�
= 4K2E

�
(Mt ´ M0)

2�
§ 16K4 (13.35)

From these we get

E
�
V(2)

t (M, P)2� = E
�
V(4)

t (M, P)
�
+ 2

nÿ

i=1

E
✓
(Mti ´ Mti´1)

2
nÿ

j=i+1

(Mtj ´ Mtj´1)
2
◆

§ 16K2 + 8K2E
�
V(2)

t (M, P)
�

(13.36)
Bounding EV(2)

t (M, P) § 4K2 as in (13.35), the claim follows. ⇤
The above formula was derived for a function of Xt alone, but it extends to other

functions as well. The result can be encoded by the following rules for infinitesimal
differentials

(dt)2 = 0, (dt)(dBt) = 0 but (dBt)
2 = dt (13.37)

Using these rules, we can take the differential of the process

Zt := exp
! ª t

0
Ys dBs ´

1
2

ª t

0
Y2

s ds
)

(13.38)

for Y P V
loc to find that

dZt = Zt(Yt dBt ´
1
2Y2

t dt) + 1
2 ZtY2

t dt = ZtYt dBt (13.39)

In integral form, this allows us to write Z as

Zt = 1 +
ª t

0
ZsYs dBs (13.40)

showing that Z is a local martingale. Note that Z generalizes the Brownian exponential
martingale telBt´ 1

2 l2t : t • 0u.
As it turns out, the Itô formula extends even to functions of multiple X’s that arise

from a multiple of Brownian motions. The statement, which we leave without proof, is
as follows:

Theorem 13.5 Let B(1), . . . , B(d) be independent standard Brownian motions with a common
Brownian filtration tFtut•0. Let X = (X(1), . . . , X(m)) be and Rm-valued stochastic process
whose coordinates are given in differential form by

dX(i)
t = U(i)

t dt +
dÿ

k=1

Y(i,k)
t dB(k)

t (13.41)

where tU(i) : i = 1, . . . , mu and tY(i,k) : i = 1, . . . , m ^ k = 1, . . . , du are as specified in
Definition 12.1 for the above to make sense. Then for each f : [0, 8) ˆ Rm

Ñ R that is C1 in the
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time variable and C2 in the spatial variables and each t • 0,

f (t, Xt) = f (0, X0) +
ª t

0

B f
Bs

(s, Xs)ds +
mÿ

i=1

ª t

0

B f
Bxi

(s, Xs)U
(i)
s ds

+
kÿ

i=1

dÿ

k=1

ª t

0

B f
Bxi

(s, Xs)Y
(i,k)
s dB(k)

s +
1
2

mÿ

i,j=1

dÿ

k=1

ª t

0

B
2 f

BxiBxj
(s, Xs)Y

(i,k)
s Y(j,k)

s ds

(13.42)

As a further generalization, one can even consider the case when the Brownian mo-
tions B(1), . . . , B(d) are not independent meaning that the covariance of this vector is not
a multiple of the identity matrix. This changes (13.42) only in the last term, which in
turn becomes

1
2

mÿ

i,j=1

dÿ

k,k1=1

ª t

0

B
2 f

BxiBxj
(s, Xs)Y

(i,k)
s Y(j,k)

s Ck,k1ds (13.43)

where Ck,k1 = Cov(B(k)
1 , B(k1)

1 ). We leave the details to the reader.
To demonstrate an example of where the multidimensional setting is particularly

useful, recall that the d-dimensional standard Brownian motion is the Rd-valued pro-
cess B = (B(1), . . . , B(d)) where B(1), . . . , B(d) are independent (1-dimensional) standard
Brownian motions. The radial variable is then denoted as

Rt :=
⇣ dÿ

i=1

[B(i)
t ]2

⌘1/2
(13.44)

We can interpret this as Rt = f ˝ B for f (x1, . . . , xd) := (x2
1 + ¨ ¨ ¨ + x2

d)
1/2. This function

is not C2 at the origin but if we stop the process before hitting the origin, Theorem 13.5
can be applied. Since, for each k = 1, . . . , d,

B f
Bxk

=
xk

f (x)
^

B
2 f

Bx2
k
=

1
f (x)

´
x2

k
f (x)3 (13.45)

a calculation shows that R admits the differential form

dRt =
d ´ 1
2Rt

dt +
1
Rt

dÿ

i=1

B(i)
t dB(i)

t (13.46)

We will see that, with proper rewrite of the second term on the right hand side, this
becomes an equation for the so called d-dimensional Bessel process.

Further reading: Section 3.3A of Karatzas-Shreve
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