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12. SEMIMARTINGALES AND THEIR QUADRATIC VARIATION

In the previous section we proved the Itô formula (11.22) for the stochastic processes of
the form t f (Bt) : t • 0u. The formula takes the following differential form

d f (Bt) = f 1(Bt)dBt +
1
2

f 2(Bt)dt (12.1)

As it turns out, in order to simplify manipulations with stochastic processes, it is conve-
nient to single out the class of processes that are generally expressed in this way.

Definition 12.1 (Generalized diffusion) A stochastic process tXt : t • 0u is a general-
ized diffusion, a.k.a. a (continuous) semimartingale, if the underlying probability carries

a standard Brownian motion tBt : t • 0u and a Brownian filtration tFtut•0 and two sto-

chastic processes tUt : t • 0u and tYt : t • 0u such that

(1) both U and Y are jointly measurable and adapted to tFtut•0,

(2) for all t • 0,

ª t

0
|Us|ds † 8 ^

ª t

0
Y2

s ds † 8 a.s. (12.2)

(3) for all t • 0,

Xt = X0 +
ª t

0
Usds +

ª t

0
Ys dBs a.s. (12.3)

In order to explain the terms mentioned in the above definition, we note the following
standard concepts:

Definition 12.2 (Local martingale) A local martingale is a process tMt : t • 0u for

which there is a sequence tTn : n • 1u of non-negative random variables such that

(1) @n • 1 : Tn is a stopping time such that tMTn^t : t • 0u is a martingale, and

(2) Tn Ñ 8 a.s. as n Ñ 8.

Definition 12.3 (Semimartingale) A stochastic process tXt : t • 0u is a semimartingale
if there exists a local martingale tMt : t • 0u such that Xt ´ Mt is of bounded variation

on any compact interval a.s. (i.e., V(1)
t (X ´ M) † 8 a.s. for each t • 0).

In short, a local martingale is a martingale after localization with the stochastic inte-
gral of a locally integrable process playing the role of a salient example. A semimartin-
gale is a sum of a local martingale and an adapted process of bounded variation, just as
stipulated in Definition 12.1 above.

We say that a semimartingale is continuous if it has continuous sample paths. An
example of a semimartingale that does not have continuous paths is a homogeneous
Poisson process tNt : t • 0u. Here the decomposition is Nt = (Nt ´ t) + t where Nt ´ t
is a martingale, albeit with discontinuous sample paths.

The term “generalized diffusion” arises from a term in the physics literature. There
the notion of a diffusion process is reserved to:
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Definition 12.4 We say that a process tXt : t • 0u is a diffusion (a.k.a. Itô diffusion) if

there exist functions f , g : [0, 8) ˆ R Ñ R such that Definition 12.1 applies with

Ut := f (t, Xt) ^ Yt := g(t, Xt) (12.4)

The conditions ensure that the stochastic dynamics governing the process X has no
memory and is local. This has been one of the governing principles of physics since
the time of Newton’s laws.

We remark that, similarly as in (12.1), the identity (12.3) will often be shortened to a
differential form as in

dXt = Utdt + YtdBt (12.5)
Here Utdt is called the drift term while YtdBt is referred to as the diffusive term. Note that
writing (12.5) tacitly assumes that all the remaining conditions in Definition 12.1 hold as
well. Indeed, these conditions are needed to ensure that the integrals are well defined
and yield an adapted jointly measurable process.

As it turns out, the Itô formula extends to semimartingales, but in order to formulate
it properly we need an interpretation of the term (dXt)2 that will inevitably arise in the
Taylor expansion. As for the Brownian motion, this will be interpreted in terms of the
quadratic variation. So we first prove:

Theorem 12.5 Let X be a semimartingale of the form dXt = Utdt + YtdBt. Then for any
t • 0 and any sequence of partitions tPnun•1,

}Pn} Ñ 0 ñ V(2)
t (X, Pn)

P
›Ñ
nÑ8

ª t

0
Y2

s ds (12.6)

Proof. Let P be a partition of [0, t]. Throughout we will repeatedly invoke the following
identity ˇ̌

ˇ V(2)
t (X, P)1/2

´ V(2)
t ( rX, P)1/2

ˇ̌
ˇ § V(2)

t (X ´ rX, P)1/2 (12.7)

which is simply the Minkowski inequality for the Euclidean norm. The fact that

V(2)
t

⇣ª ¨

0
Usds, P

⌘
§ V(1)

t

⇣ª ¨

0
Usds, P

⌘
osc≥¨

0 Usds
�
[0, t], }P}

�
(12.8)

along with the bound

V(1)
t

⇣ª ¨

0
Usds, P

⌘
§ sup

P1
V(1)

t

⇣ª ¨

0
Usds, P1

⌘
=

ª t

0
|Us|ds (12.9)

where the integral is finite almost surely by Definition 12.1(2), then show

}Pn} Ñ 0 ñ V(2)
t

⇣ª ¨

0
Usds, Pn

⌘
a.s.

›Ñ
nÑ8 0 (12.10)

Using this in (12.7) we conclude that the drift term has no contribution to the limit and it
suffices to prove the claim for X such that dXt = YtdBt. We will do this by going from Y
simple to Y P V and Y P V

loc.
STEP 1 (Y simple): Let us first assume first that Xt =

≥t
0 Ys dBs for Y P V0 with Y0 = 0

and, without loss of generality, Yu = 0 for u • t. This permits us to write Y in the form
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Y =
∞k

i=1 Zi1(si´1,si ] for some 0 = s0 † s1 † ¨ ¨ ¨ † sk § t. Let t0 = 0 † t1 † ¨ ¨ ¨ †

tm = t denote the points defining the partition P. Assuming henceforth that }P} †

mini§n |si ´ si´1|, each interval [ti´1, ti] of the partition contains at most one “jump” of Y.
Let I Ñ t1, . . . , mu be the indices denoting the intervals containing such a jump; i.e.,
those i for which ts0, . . . , sku X [ti´1, ti] ‰ H. For each i P t1, . . . , mu, let

j(i) := maxtj • 0 : sj § tiu (12.11)

We then have
@i R I : sj(i) † ti´1 ^ sj(i)+1 ° ti

@i P I : ti´1 § sj(i) § tj
(12.12)

This gives

V(2)
t (X, P) =

ÿ

iRI
Z2

j(i)+1(Bti ´ Bti´1)
2

+
ÿ

iPI

⇣
Zj(i)(Bsj(i) ´ Bti´1) + Zj(i)+1(Bti ´ Bsj(i) )

⌘2
(12.13)

Since maxi§n |Zi| § C a.s. by the assumption that Y is simple, the expectation of the
second term is at most

2C2
ÿ

iPI

⇣
E
�
(Bsj(i) ´ Bti´1)

2�+ E
�
(Bti ´ Bsj(i) )

2�
⌘

= 2C2
ÿ

iPI
(ti ´ ti´1) § 4C2(k + 1)}P} (12.14)

where we first used that (a + b)2
§ 2a2 + 2b2 and the noted that |I | § k + 1.

As to the first term on the right of (12.13), we write this as
ÿ

iRI
Z2

j(i)+1(ti ´ ti´1) +
ÿ

iRI
Z2

j(i)+1

⇣
(Bti ´ Bti´1)

2
´ (ti ´ ti´1)

⌘
(12.15)

For the first term in this sum we then get
ˇ̌
ˇ
ÿ

iRI
Z2

j(i)+1(ti ´ ti´1) ´

ª t

0
Y2

s ds
ˇ̌
ˇ § C2

ÿ

iPI
(ti ´ ti´1) § C2(k + 1)}P} (12.16)

proving that this term tends to the desired integral as }P} Ñ 0. Since Zj(i)+1 is Fsj(i)-
measurable and so, by the first line in (12.12), also Fti´1 -measurable, the expectation of
the second term in (12.15) vanishes thanks to the fact that (Bti ´ Bti´1)

2
´ (ti ´ ti´1) is a

martingale increment. By the same reasoning (and the assumed a.s. bound on the Zi’s)
the second moment is at most

C4
ÿ

iRI
E
✓⇣

(Bti ´ Bti´1)
2

´ (ti ´ ti´1)
⌘2

◆
§ C4tVar(N (0, 1)2)}P} (12.17)

We conclude that the second term in (12.15) tends to zero in probability as }P} Ñ 0
which proves (12.10) for all Y simple.
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STEP 2 (Y square integrable): Next assume Y P V . Then there exists tY(n)
un•1 Ñ V0 such

that Y(n)
Ñ Y in V . Denote

X(n)
t :=

ª t

0
Y(n)

s dBs (12.18)

Then (12.7) yields

E
✓ˇ̌

ˇ V(2)
t (X, P)1/2

´V(2)
t (X(n), P)1/2

ˇ̌
ˇ
2
◆

§ EV(2)
t (X ´ X(n), P)

= E
�
|Xt ´ X(n)

t |
2� = E

⇣ª t

0
(Ys ´ Y(n)

s )2dx
⌘

(12.19)

were we noted that, since X ´ X(n) is an L2-martingale, its increments over non-overlapping
intervals of the partition are uncorrelated and then invoked the Itô isometry at the end.
Similarly we get

E

0

@
ˇ̌
ˇ̌
ˇ

✓ª t

0
Y2

s ds
◆1/2

´

✓ª t

0
(Y(n)

s )2ds
◆1/2

ˇ̌
ˇ̌
ˇ

2
1

A § E
⇣ª t

0
(Ys ´ Y(n)

s )2dx
⌘

(12.20)

Using that Y(n)
Ñ Y in V , the left-hand sides of (12.19–12.20) tend to zero as n Ñ 8. To

get the claim from this note that, for any non-negative random variables tZnun•1 and Z
we have

|Zn ´ Z| § 2Z1/2
|Z1/2

n ´ Z1/2
| + (Z1/2

n ´ Z1/2)2 (12.21)
Assuming these random variables are in L2, the Cauchy-Schwarz inequality shows that
Z1/2

n Ñ Z1/2 in L2 (resp., in probability) implies Zn Ñ Z in L1 (resp., in probability).
STEP 3 (Y locally square integrable): Finally, let us address the case Y P V

loc which
requires a (by now) routine localization step. Let tPnun•1 of partitions of [0, t] with
}Pn} Ñ 0 and let T(M) be the quantity in (10.2). Then

rXt := XT(M)^t =
ª t

0
Ys1tT(M)°sudBs (12.22)

Since tYs1tT(M)°su : s • 0u P V , on tT(M)
° tu we get

V(2)
t (X, Pn) = V(2)

t ( rX, Pn)
P

›Ñ
nÑ8

ª t

0
Y2

s 1tT(M)°suds (12.23)

by STEP 2 above. Since Y2
s 1tT(M)°su = Y2

s for all s P [0, t] on tT(M)
° tu, Lemma 11.5

shows that the integral on the right equals
≥t

0 Ys dBs a.s. on tT(M)
° tu. Since

î
M•1tT(M)

°

tu is a full measure set, the claim is proved. ⇤
We now put forward:

Definition 12.6 Given a semimartingale X of the form dXt = Utdt + YtdBt, we call

xXyt :=
ª t

0
Y2

s ds (12.24)
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the quadratic variation process associated with X.

With this we observe:

Lemma 12.7 (Doob-Meyer decomposition for stochastic integral squared) Let X be a
semimartingale of the form dXt = YtdBt. Then tX2

t ´ xXyt : t • 0u is local martingale.

Proof. Suppose first Y P V . Denoting by tFtut•0 the underlying Brownian filtration, for
all t • u • 0 the conditional Itô isometry from Lemma 11.3 gives

E
�
X2

t ´ X2
u

ˇ̌
Fu

�
= E

�
(Xt ´ Xu)

2 ˇ̌
Fu

�
= E

✓⇣ª t

u
Ys dBs

⌘2
ˇ̌
ˇ̌Fu

◆

= E
✓ª t

u
Y2

s ds
ˇ̌
ˇ̌Fu

◆
= E

�
xXyt ´ xXyu

ˇ̌
Fu

�
(12.25)

where we used that E(Xt ´ Xu|Fu) = 0 in the first step. It follows that tX2
t ´ xXyt : t • 0u

is a martingale.
For Y P V

loc we use that rXt := XT(M)^t is of the form treated above and so the process
t rX2

t ´ x rXyt : t • 0u is a martingale. By (12.22) and the fact that the integrand there is
in V , the quadratic variation process of rX takes the form

x rXyt =
ª T(M)^t

0
Y2

s ds = xXyT(M)^t (12.26)

Since T(M) is a stopping with T(M)
Ñ 8 a.s. as M Ñ 8, we get that tX2

t ´ xXyt : t • 0u

is a local martingale according to Definition 12.2. ⇤
The conclusion of Lemma 12.7 is an instance of Doob-Meyer decomposition of a con-

tinuous local submartingale tZt : t • 0u, of which Zt := X2
t is an example, as the sum

Zt = Mt + At of a local martingale M and a non-decreasing continuous process A. A
proof of this is somewhat complicated and can be found in Karatzas and Shreve’s book.

An important part of Doob-Meyer decomposition statement is a uniqueness clause:
the non-decreasing process (and thus also the martingale) is determined uniquely by its
value at time zero. This clause is extracted from the following lemma whose proof we
leave to homework.

Lemma 12.8 Let tMt : t • 0u be a continuous local martingale such that, for some t • 0,

V(1)
t (M) † 8 a.s. (12.27)

Then
P
�

@s P [0, t] : Mt = M0
�
= 1 (12.28)

Indeed, if the submartinagle admits two different decompositions, Xt = Mt + At =
ÄMt + rAt, then the local marginagle M ´ ÄM obeys Mt ´ ÄMt = rAt ´ At for each t • 0. The
process on the right is a difference of two non-decreasing functions and so it is of finite
variation on any interval. The above lemma then tells us that M ´ ÄM is constant a.s. and,
if A0 = rA0 = 0, it vanishes everywhere a.s.

Preliminary version (subject to change anytime!) Typeset: February 9, 2024



MATH 275D notes 64

We leave the proof of Lemma 12.8 to homework. As a consequence of the ensuing
uniqueness argument, we also get:

Corollary 12.9 Suppose that tUt : t • 0u, t rUt : t • 0u, tYt : t • 0u and trYt : t • 0u obey
conditions (1-2) of Definition 12.1 and, for some t • 0,

@u P [0, t] :
ª u

0
Usds +

ª u

0
YsdBs =

ª u

0
rUsds +

ª u

0
rYtdBt (12.29)

holds a.s. Then
l
⇣

s P [0, t] : Ys ‰ rYs _ Us ‰ rUs

⌘
= 0 a.s. (12.30)

In particular, the representation (12.3) of a generalized diffusion X is unique up to equivalence.

Proof. Since u fiÑ
≥u

0 (Us ´ rUs)ds is of bounded variation, equality (12.29) forces the con-
tinuous local martingale u fiÑ

≥u
0 (Ys ´ rYs)dBs to vanish for all u P [0, t] a.s. Lemma 11.5

then gives that Ys ‰ rYs on a Lebesgue null set a.s. But then
≥u

0 (Us ´ rUs)ds = 0 for
all u P [0, t] a.s. which by the Lebesgue differentiation theorem shows that also Us ‰ rUs
on Lebesgue null set a.s. ⇤

As a final remark we note that uniqueness of Doob-Meyer decomposition may fail
without continuity. Indeed, if tBt : t • 0u is a standard Brownian motion and tNt : t • 0u

an independent rate-1 Poisson process, then (assuming the filtration is such that N is
Markov) both tB2

t ´ t : t • 0u and tB2
t ´ Nt : t • 0u are martingales.

Further reading: Section 1.5 of Karatzas-Shreve
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