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11. PROPERTIES OF ITÔ INTEGRAL

We now move to a discussion of the properties of the Itô integral defined above.

11.1 Linearity and additivity in domain of integration.

Our first observation is that this integral is linear in the integrand.

Lemma 11.1 (Linearity) For all Y, rY P V
loc and all a, b P R,

aY + b rY P V
loc (11.1)

and, for all t • 0,
ª t

0
(aYs + b rYs)dBs = a

ª t

0
YsdBs + b

ª t

0
rYsdBs a.s. (11.2)

Proof. The joint measurability and adaptedness of aY + b rY is clear. For local square
integrability in time, use the formula (a + b)2

§ 2a2 + 2b2 to get
ª t

0
(aYs + b rYs)

2 ds § 2a2
ª t

0
Y2

s ds + 2b2
ª t

0
rY2

s ds (11.3)

thus proving (11.1).
Concerning (11.2), recall that in Lemma 8.3 we observed that this holds for simple

processes. The Itô isometry then extends this to all Y, rY P V . The only subtle point is
localization. Here we will rely on Theorem 10.10 and use

TN := inf
!

t • 0 :
ª t

0
(Y2

s + rY2
s )ds • M

)
(11.4)

as the family of stopping times to extend the integral to locally integrable processes. This
choice ensures that Y(N) := tYs1tTN°su : s • 0u P V and rY(N) := trYs1tTN°su : s • 0u P V

for all N • 0. As TN Ñ 8 a.s. for Y, rY P V
loc, the identity (11.2) for aY(N) + b rY(N) yields

the same identity for aY + b rY. ⇤
Another property worthy of noting is additivity under subdivision of the integration

domain. The precise formulation is somewhat cumbersome due the dependence of the
integral on the underlying Brownian motion. But the result is the same of what we
would expect from the ordinary Stieltjes integral.

Lemma 11.2 For Y P V
loc associated with Brownian motion B and Brownian filtration tFtut•0

and u ° 0, denote
rYs := Yu+s, rBs := Bu+s ´ Bu and rFs := Fu+s. (11.5)

Then t rFtut•0 is a Brownian filtration for Brownian motion rB and rY P
Å
V loc, for Å

V loc defined
using the filtration t rFtut•0. Moreover, for each t • u,

ª t

0
Ys dBs =

ª u

0
Ys dBs +

ª t´u

0
rYs d rBs a.s. (11.6)
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We leave the proof of this lemma to homework. In order to make the notation easier,
for each Y P V

loc and 0 § u § t we denote
ª t

u
Ys dBs :=

ª t

0
Ys dBs ´

ª u

0
Ys dBs. (11.7)

Then (11.6) shows that this is stochastic integral for the shifted Brownian path and in-
tegrand. With this notation the stochastic integral behaves very much like the ordinary
Stieltjes integral. The restriction to a subinterval is naturally accompanied with:

Lemma 11.3 (Conditional Itô isometry) Writing tFtut•0 for the Brownian filtration under-
lying the definition of the stochastic integral such that F0 contains all P-null sets. Prove that
(for a suitable version of Itô integral)

@Y P V
loc

@t • 0 :
ª t

0
YsdBs is Ft-measurable (11.8)

and for each Y P V and each t • u • 0,

E
✓⇣ª t

u
Ys dBs

⌘2
ˇ̌
ˇ̌Fu

◆
= E

✓ª t

u
Y2

s ds
ˇ̌
ˇ̌Fu

◆
a.s. (11.9)

Proof (sketch). These are checked readily for Y simple. Itô isometry then extends these to
to Y P V ; localization then to Y P V

loc. Details left to homework. ⇤

11.2 Dependence on integrand.

Our next set of observations concern the dependence of the integral on the integrand Y.
We start with a simple fact:

Lemma 11.4 Writing l for the Lebesgue measure on [0, 8), for all Y, Y P V and t • 0,
ª t

0
Ys dBs =

ª t

0
rYs dBs a.s. (11.10)

is equivalent to
l
�
ts P [0, t] : Ys ‰ rYsu

�
= 0 a.s. (11.11)

(The measure depends on w via Y and rY.)

Proof. By the Itô isometry, (11.10) is equivalent to }Y ´ rY}L2([0,t]ˆW) = 0 which is then
equivalent to (11.11). ⇤

The Itô integral on V thus determines the integrand uniquely. It turns out that the
same works for Y P V

loc, but the proof of this requires techniques we do not have just
yet. However, we can certainly prove the following intuitive variants that come (for later
reference) in two lemmas:

Lemma 11.5 Writing l for the Lebesgue measure on [0, 8), for all Y, Y P V
loc and t • 0,

ª t

0
Ys dBs =

ª t

0
rYs dBs (11.12)
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holds almost surely on the set
!

w P W : l
�
ts P [0, t] : Ys(w) ‰ rYs(w)u

�
= 0

)
(11.13)

The converse direction comes in:

Lemma 11.6 Writing l for the Lebesgue measure on [0, 8), for all Y, Y P V
loc and t • 0,

l
�
ts P [0, t] : Ys(w) ‰ rYs(w)u

�
= 0 (11.14)

holds almost surely on the set where

@0 § u § t :
ª u

0
Ys dBs =

ª u

0
rYs dBs (11.15)

where continuous versions of the integrals are used on the right-hand side.

We leave the proof of these lemmas to homework. The above considerations also lead
to the question of whether the stochastic integral is continuous in the integrand in any
reasonable sense. For Y P V , the continuity is in L2-sense by Itô isometry. As it turns out,
for V loc the same holds under convergence in probability.

Lemma 11.7 Let tY(n)
unPN P (V loc)N and Y P V

loc be such that, for some t • 0,
ª t

0
[Y(n)

s ´ Ys]
2ds P

›Ñ
nÑ8 0 (11.16)

Then
ª t

0
Y(n)

s dBs
P

›Ñ
nÑ8

ª t

0
Ys dBs (11.17)

We again leave the straightforward proof of this lemma to homework.

11.3 Riemann sums and Itô formula.

As our next item of concern, we return to the discussion we used to motivate the in-
troduction of the stochastic integral. In particular, in Lemma 6.5 we showed that the
left-endpoint Riemann sums associated with the stochastic integral of functions of the
underlying Brownian motion converge in probability when the mesh of the partition
tends to zero. We now extend this to all continuous processes in V

loc and identify the
limit object with the stochastic integral defined above.

Lemma 11.8 Let Y P V
loc be continuous. Then for any t • 0 and any sequence tPnun•1 of

partitions of [0, t], where Pn = t0 = t(n)0 † t(n)1 † ¨ ¨ ¨ † t(n)m(n) = tu,

}Pn} Ñ 0 ñ

m(n)ÿ

i=1

Y
t(n)i´1

(B
t(n)i

´ B
t(n)i´1

) P
›Ñ
nÑ8

ª t

0
Ys dBs (11.18)
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Proof. Define

Y(n)
s :=

m(n)ÿ

i=1

Y
t(n)i´1

1
(t(n)i´1,t(n)i ]

(s) (11.19)

Then Y(n)
P V0 and note that

m(n)ÿ

i=1

Y
t(n)i´1

(B
t(n)i

´ B
t(n)i´1

) =
ª t

0
Y(n)

s dBs (11.20)

A straightforward computation shows
ª t

0
[Y(n)

s ´ Ys]
2ds § oscY

�
[0, t], }Pn}

�2t (11.21)

and the oscillation tends to zero once }Pn} Ñ 0 by the assumed continuity of Y. This
implies that (11.16) is in force; the conclusion (11.17) then yields the claim. ⇤

Having settled the convergence of Riemann sums, we can now use the derivation
underlying Lemma 6.5 to get:

Theorem 11.9 (Itô formula) Let f P C2(R). Then for each t • 0,

f (Bt) = f (B0) +
ª t

0
f 1(Bs)dBs +

1
2

ª t

0
f 2(Bs)ds (11.22)

Proof. First observe that both integrals in (11.22) exist by the fact that t fiÑ f 1(Bt)2 and
t fiÑ | f 2(Bt)| are both continuous and locally integrable. Given a partition P = t0 = t0 †

t1 † ¨ ¨ ¨ † tn = tu, the proof of Lemma 6.5 showed that

f (Bt) ´ f (B0) =
nÿ

i=1

f 1(Bti´1)(Bti) ´ Bti´1) +
1
2

nÿ

i=1

f 2(Bti´1)(ti ´ ti´1) + e(P) (11.23)

where e(P) is a random quantity that obeys e(P) P
Ñ 0 whenever }P} Ñ 0. Since t fiÑ

f 2(Bt) is continuous, the second sum converges to the second integral in (11.22) by the
usual criteria in Riemann integration theory. Lemma 11.8 gives convergence of the first
sum to the stochastic integral in (11.22). ⇤

We remark that the condition that f is twice continuously differentiable can be weak-
ened to f 1 being absolutely continuous, and thus differentiable in the Lebesgue sense (so
that the Fundamental Theorem of Calculus can be invoked).

Recall that the quantity involving the integrals in (11.22) is called the Stratonovich
integral

≥t
0 f 1(Bs) ˝ dBs; see (6.41). The advantage of the Stratonovich integral is that (at

least formally) the Fundamental Theorem of Calculus holds. However, a major draw-
back is that one needs to be able to differentiate f in order to integrate f ˝ B. Another
disadvantage is that there is no obvious extension from integrals of t f (Bs) : s • 0u to
those of more general processes tYs : s • 0u. Notwithstanding, the Stratonovich integral
is useful because is appears in some natural practical considerations:
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Theorem 11.10 (Wong and Zakai 1969) Let tB(n)
t : t • 0unPN be stochastic processes and let

tBt : t • 0u be a Brownian motion such that, for some t • 0,

(1) @n P N : B(n) is continuous on [0, t] ^ V(1)
t (B(n)) † 8 a.s.

(2) B(n)
0

P
›Ñ
nÑ8 B0 and B(n)

t
P

›Ñ
nÑ8 Bt.

Then for all f P C1(R),
ª t

0
f (B(n)

s )dB(n)
s

P
›Ñ
nÑ8

ª t

0
f (Bs) ˝ dBs (11.24)

Here, on the left, the integral is in the Riemann-Stieltjes sense.

Proof. The assumed continuity and bounded variation of B(n) ensures that the Stieltjes
integral exists. Moreover, writing F for an antiderivative of f , we have

ª t

0
f (B(n)

s )dB(n)
s = F(B(n)

t ) ´ F(B(n)
0 ) (11.25)

In light of (2), the right hand side converges in probability to

F(Bt) ´ F(B0) =
ª t

0
f (Bs) ˝ dBs. (11.26)

This gives the claim. ⇤
While the previous result is not very deep mathematically, it is a warning sign that

simulating the Itô integral directly on a computer may require considerable care.

Further reading: Section 3.2 in Øksendal
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