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10. EXTENSION VIA LOCALIZATION

In the previous lectures we gradually defined the Itô integral for every process that is
jointly-measurable, adapted and square integrable with respect to both time and the un-
derlying probability measure on any compact interval of times. While technically con-
venient for the construction, the requirement of square integrability is often a nuisance
and so we will now show how to get even beyond that.

Our standing assumption is that we are given a probability space (W,F , P) that sup-
ports a standard Brownian motion tBt : t • 0u and a Brownian filtration tFtut•0 such
that F0 contains all P-null sets. Let V loc be the class of processes Y = tYt : t • 0u on
(W,F , P) that are jointly measurable, adapted to tFtut•0 and obey

@t • 0 :
ª t

0
Y2

s ds † 8 a.s. (10.1)

where the integral is meaningful (as a Lebesgue integral) thanks to the assumption of
joint measurability (which implies that t fiÑ Yt(w) is a Borel function for each w P W).
The said extension now comes in:

Theorem 10.1 Let Y P V
loc and, for M ° 0, set

T(M) := inf
!

t • 0 :
ª t

0
Y2

s ds • M
)

(10.2)

Then for each M ° 0,
(1) tYt1tT(M)°tu : t • 0u P V , and
(2) for all t • 0 and all N • M,

ª t

0
Ys1tT(N)°su dBs =

ª t

0
Ys1tT(M)°su dBs a.s. on tT(M)

° tu (10.3)

In particular, for each t • 0,
ª t

0
Ys dBs := lim

MÑ8

ª t

0
Ys1tT(M)°su dBs (10.4)

exists and is finite a.s.

The main difficulty in part (1) is to show that the process there is adapted and mea-
surable. For this we recall the following concept:

Definition 10.2 Given a filtration tFtut•0, a [0, 8]-valued random variable T is a stop-
ping time if

@t • 0 : tT § tu P Ft (10.5)

We now note:

Lemma 10.3 Under the above setting and assumptions, T(M) in (10.2) is a stopping time for
each M • 0 and each Y P V

loc.
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Proof. A standard monotone class argument shows that
≥u

0 Y2
s ds is Fu-measurable once Y

is jointly measurable and adapted. To get the claim form this we note that, by the conti-
nuity of u fiÑ

≥u
0 Y2

s ds on the set where it is finite, we have

tT(M)
§ tu =

!ª t

0
Y2

s ds • M
)

Y

✓!ª t

0
Y2

s ds † M
)

X

£

n•1

!ª t+1/n

0
Y2

s ds = 8

)◆
(10.6)

The events in the giant intersections are P-null and so belong to F0 by assumption. The
remaining events lie in Ft and so we get tT(M)

§ tu P Ft as desired. ⇤
The main argument of the proof of Theorem 10.2 now comes in:

Proposition 10.4 Under the aforementioned standing assumptions, for each Y P V and each
stopping time T we have  

Yt1tT°tu : t • 0
(

P V (10.7)

and, writing tIt : t • 0u for a continuous version of t fiÑ
≥t

0 YsdBs, for each t • 0,
ª T^t

0
Ys dBs := IT^t =

ª t

0
Ys1tT°su dBs a.s. (10.8)

Here the middle quantity is Iu evaluated at u := T ^ t.

The proof is a blueprint for many similar proofs involving stopping times. First we
check that the result holds for discrete-valued stopping times and simple processes.
Then we take limits to extend this to the stated general case.

We start with the discretization of T. For integer N • 0, define

TN := 2´Nr2NTs. (10.9)

We then have:

Lemma 10.5 TN is a stopping time with TN Ó T as N Ñ 8. The processes t1tTN°tu : t • 0u

with N • 0, as well as t1tT°tu : t • 0u, are adapted and jointly measurable.

Proof. Since TN = k2´N on t(k ´ 1)2´N
† T § k2´N

u, we have

tTN § tu =
§

k§2Nt

 
(k ´ 1)2´N

† T § k2´N(
=

 
T § 2´Nt2Ntu

(
(10.10)

It follows that if T is a stopping time, then so is TN . The dyadic nature of the discretiza-
tion implies that tTNuN•0 is non-increasing and, in light of

TN ´ 2´N
§ T § TN (10.11)

we get TN Ó T as N Ñ 8 (including on tT = 8u = tTN = 8u).
By the fact that tTNuN•0 and T are stopping times, the processes t1tTN°tu : t • 0u for

any N • 0, as well as t1tT°tu : t • 0u are adapted. As to joint measurability, note that
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given any random variable U taking values in a discrete set tui : i • 0u, the represen-
tation 1tU°tu =

∞
i•0 1(ui ,8)(t)1tU=uiu shows that t1tU°tu : t • 0u is jointly measurable.

Setting Un := 2´nt2nUu yields a sequence of discrete-valued random variables with
Un Ò U. As 1Un°t Ò 1U°t for each t • 0, the process t1tU°tu : t • 0u is jointly measurable
for all random variables U. ⇤

Next, since Y P V , Theorem 9.5 tells us that there are tY(n)
un•0 P V

N
0 such that

[[Y ´ Y(n)]] ›Ñ
nÑ8 0. (10.12)

We now proceed to restate and prove the claim for the discretized processes:

Lemma 10.6 For each n • 1 and N • 0,
 

Y(n)
t 1tTN°tu : t • 0

(
P V (10.13)

and, for each t • 0,
ª TN^t

0
Y(n)

s dBs =
ª t

0
Y(n)

s 1tTN°su dBs a.s. (10.14)

Here, on the left, we use the defining expression of the integral for processes in V0.

Proof. The containment Y(n)
P V0 guarantees that each Y(n) is adapted, jointly measur-

able and bounded. Lemma 10.5 implies the same about t1tTN°tu : t • 0u and thus also
about tY(n)

t 1tTN°tu : t • 0u. This is enough to ensure containment in V .
For the second part of the claim, note that for t • 0 the Tonelli Theorem applied to

infinite sums along with the fact that TN takes values in 2´NN yields

1tTN°tu =
ÿ

`•0

1tTN=`2´Nu1[0, `2´N)(t) =
ÿ

`•0

`´1ÿ

k=0

1tTN=`2´Nu1[k2´N ,(k+1)2´N)(t)

=
ÿ

k•0

8ÿ

`=k+1

1tTN=`2´Nu1[k2´N ,(k+1)2´N)(t) =
ÿ

k•0

1tTN°k2´Nu1[k2´N ,(k+1)2´N)(t).

(10.15)

The expression on the right has almost the form of a simple process except for two points:
The intervals are open/closed at opposite ends than they should be and the sum is infi-
nite rather than finite. To address these issues, assume that Y takes the form

Y(n)
t = Z01t0u(t) +

mÿ

i=1

Zi1(ti´1,ti ](t), (10.16)

where t0 = 0 † t1 † ¨ ¨ ¨ † tm and Zi P L8 is Fti´1 -measurable for each i so that tm2N
P N

and tti : i = 0, . . . , tmu contains all the points in tk2´N : k • 0 ^ k2´N
§ tmu. Then

Rt :=
mÿ

i=1

Zi1tTN°ti´1u1(ti´1,ti ](t) (10.17)
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is a simple process such that

ˇ̌
Y(n)

t 1tTN°tu ´ Rt
ˇ̌

§

mÿ

i=0

}Zi}1tti´1u(t) (10.18)

where t´1 := 0. The Lebesgue integral of the right-hand side vanishes which means that
the processes tY(n)

t 1tTN°tu : t • 0u and tRt : t • 0u are equivalent in V .
Using the defining expression for integrals of simple functions, we then get

ª TN^t

0
Y(n)

s dBs =
mÿ

i=1

Zi(BTN^t^ti ´ BTN^t^ti´1) (10.19)

The above-mentioned equivalence in turn gives
ª t

0
Y(n)

s 1tTN°su dBs
a.s.
=

ª t

0
Rs dBs =

mÿ

i=1

Zi1tT°ti´1u(Bt^ti ´ Bt^ti´1) (10.20)

Since TN takes values in tti : i = 0, . . . , mu, we have

BTN^t^ti ´ BTN^t^ti´1 =
�

BTN^t^ti ´ BTN^t^ti´1

�
1tTN•tiu

=
�

Bt^ti ´ Bt^ti´1

�
1tTN•tiu =

�
Bt^ti ´ Bt^ti´1

�
1tTN°ti´1u

(10.21)

where the first equality follows from the fact that the difference on the left-hand side
vanishes on tTN † tiu = tTN § ti´1u and the rest is a rewrite based on the complemen-
tary equality tTN • tiu = tTN ° ti´1u. This equates the right-hand sides of (10.20) with
(10.19) proving (10.14) as desired. ⇤

We now start taking limits, starting with the integral of the truncated process:

Lemma 10.7 For each t • 0,

lim
NÑ8

lim sup
nÑ8

E

 ˇ̌
ˇ̌
ª t

0
Y(n)

s 1tTN°su dBs ´

ª t

0
Ys1tT°su dBs

ˇ̌
ˇ̌
2
!

= 0. (10.22)

Proof. Note that (10.11) implies

0 § 1tTN°su ´ 1tT°su = 1tT§s†TNu (10.23)

The triangle inequality combined with Itô isometry gives

}Y(N)1tTN°¨u´Y1tT°¨u}L2([0,t]ˆW)

§ }Y(n)
´ Y}L2([0,t]ˆW) +

hª t

0
Y2

s 1tT§s†TNuds
i1/2 (10.24)

The first term vanishes as n Ñ 8 by (10.12). Using 1tT§s†TNu Ñ 1tT=su as N Ñ 8, the
Dominated Convergence Theorem shows that the second term vanishes as N Ñ 8. In
light of the isometry-based construction of the Itô integral, this implies (10.22). ⇤

Next we address the limit of the integral truncated by the stopping time:
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Lemma 10.8 For each t • 0 and each N • 0,
ª TN^t

0
Y(n)

s dBs
P

›Ñ
nÑ8

ª TN^t

0
Ys dBs (10.25)

Proof. Pick e ° 0 and note that, by Doob’s L2-inequality (see Lemma 9.3) relying on the
fact that the stochastic integral is an L2-martingale,

P

 ˇ̌
ˇ̌
ª TN^t

0
Y(n)

s dBs ´

ª TN^t

0
Ys dBs

ˇ̌
ˇ ° e

!

§ P

 
sup

0§u§t

ˇ̌
ˇ̌
ª u

0
Y(n)

s dBs ´

ª u

0
Ys dBs

ˇ̌
ˇ̌ ° e

!
§

1
e2 }Y(n)

´ Y}
2
L2([0,t]ˆW)

(10.26)

The right-hand side tends to zero by (10.12). ⇤
We are now ready to give:

Proof of Proposition 10.4. The claim in (10.7) follows by the same arguments as those
used in the proof of Lemma 10.6. To get (10.8), we now invoke (10.14) along with Lem-
mas 10.7–10.8 and the fact that

ª TN^t

0
Ys dBs ›Ñ

NÑ8

ª T^t

0
Ys dBs a.s. (10.27)

implied by TN Ó T and the fact that the stochastic integral admits a continuous version
almost surely (see Theorem 9.2). ⇤

Moving over to the proof of the main result of this section, we first observe:

Lemma 10.9 For each Y P V
loc and each M • 0,

 
Yt1tT(M)°tu : t • 0

(
P V (10.28)

Proof. Lemma 10.5 gives that the process is adapted and measurable. To check contain-
ment in V , note

≥u
0 Y2

s ds § M on tT(M)
° uu. Hence,

ª t

0
(Ys1tT(M)°su)

2 ds = lim
uÒT(M)^t

ª u

0
Y2

s ds § M (10.29)

by the Monotone Convergence Theorem. As this holds for all t • 0, we get (10.28). ⇤
Proof of Theorem 10.1. Let Y P V

loc. Part (1) was proved in Lemma 10.9. For (2) we note
that, since M fiÑ T(M) is non-decreasing,

N • M ñ 1tT(M)°su = 1tT(M)°su1tT(N)°su (10.30)

Proposition 10.4 then gives
ª t

0
Ys1tT(M)°su dBs

N•M
=

ª t

0
Ys1tT(N)°su1tT(M)°su dBs

a.s.
=

ª T(M)^t

0
Ys1tT(N)°su dBs

=
ª t

0
Ys1tT(N)°su dBs on tT(M)

° tu
(10.31)
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This proves (10.3) as well as (10.4), for (a.s.) constant sequences have (a.s.) limits and
that limit exists on

î
M•1tT(M)

° tu which is a full-measure event by (10.2). ⇤
As a consequence of Theorems 9.2, 9.5 and 10.1 and also Proposition 10.4 we get:

Theorem 10.10 Suppose the Brownian filtration tFtut•0 is such that F0 contains all P-null
sets. Then for all Y P V

loc the integral defined in (10.4) admits a continuous version that is
adapted to tFtut•0 and obeys

ª T^t

0
YsdBs =

ª t

0
Ys1tT°sudBs a.s. (10.32)

for each t • 0 and each stopping time T with respect to tFtut•0. In particular, if tTNuN•0 is a
sequence of stopping times such that tYt1tTN°tu : t • 0u P V for each N • 0 and TN Ñ 8 a.s.,
then for each t • 0, ª t

0
Ys1tTN°sudBs ›Ñ

NÑ8

ª t

0
YsdBs a.s. (10.33)

Proof. That a continuous version of the extended Itô integral exists follows from the
fact that on tT(M)

° tu, the map u fiÑ
≥u

0 YsdBs for u P [0, t] coincides with u fiÑ≥u
0 Ys1tT(M)°sudBs which admits a continuous version by (10.28) and Theorems 9.2. Propo-

sition 10.4 then gives
ª T^t

0
YsdBs =

ª t

0
Ys1tT(M)°su1tT°sudBs a.s. on tT(M)

° tu (10.34)

Letting rT(M) := inftu • 0 :
≥u

0 Y2
s 1tT°suds • Mu, we now check rT(M)

^ T = T(M)
^ T

and so ª t

0
Ys1tT(M)°su1tT°sudBs =

ª t

0
Ys1tT°su1trT(M)°sudBs (10.35)

The right-hand side equals the integral on the right of (10.32) on tT(M)
° tu, which is a

subset of trT(M)
° tu. Hence we get (10.32) on

î
M•0tT(M)

° tu which is a full-measure
set by the fact that Y P V

loc. By (10.32), the object on the left-hand side of (10.33) equals
the right-hand side once TN ° t. As TN Ñ 8 a.s., the equality holds a.s. ⇤

Remark 10.11 The upshot of (10.33) is that the extension of the Itô integral to Y P V
loc in

(10.4) can be done along any sequence tTNuN•0 of stopping times such that TN Ñ 8 a.s.
as N Ñ 8 and tYt1tTN°tu : t • 0u P V for every N • 0.

The Itô integral has now been extended to all Y P V
loc. A further extension can be

attempted by assuming (10.2) (or having Y defined) only up to a stopping time. These
extensions are handled by working with the stopped process tYt^T : t • 0u (which still
needs to be assumed in V

loc). We will also see later that no extension beyond processes
for which t fiÑ Yt is locally square integrable exists.

Further reading: Section 3.2D of Karatzas-Shreve
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