
1 MATH 275D notes

1. FOUNDATIONS OF STOCHASTIC PROCESSES

MATH 275D is a course in stochastic calculus, whose prime concepts of interest are
the stochastic integral and stochastic differential equations. Both of these are useful
tools in the general theory of stochastic processes. We therefore start by explaining how
stochastic processes are defined in the standard model of probability theory.

1.1 Stochastic processes in the Kolmogorov model.

We will always assume the standard setting for probability, which is the Kolmogorov
model rooted in measure theory. Every probability setting or statement thus assumes,
often tacitly, an underlying probability space, defined as follows:

Definition 1.1 A probability space is a triplet (W,F , P) with the following properties:

(1) W is a set representing, at least in our imagination, the collection of all potential

outcomes of a random experiment that we are concerned with,

(2) F is a s-algebra on W, which means that F is a collection of subsets of W that

contains H and W and is closed under countable unions,

@tAnun•1 Ñ F :
§

n•1

An P F (1.1)

and complements,

@A P F : Ac := W r A P F (1.2)

(3) P is a probability measure on (W,F ), which means that P is a map P : W Ñ [0, 1]
that is countably additive in the sense

@tAnun•1 Ñ F disjoint : P
⇣§

n•1

An

⌘
=

ÿ

n•1

P(An) (1.3)

and normalized so that P(W) = 1. (This is indeed a normalization condition since

countable additivity implies monotonicity of A fiÑ P(A) under the set inclusion.)

Elements of F are referred to as events; these are the “questions” that we are allowed to
ask about our random experiment. We note that various s-algebras may be assumed on
the same probability space; the finer (meaning, larger) the s-algebra, the more events —
and thus more information — it contains. This underlies the following natural concept:

Definition 1.2 (Filtration) Given a measurable space (W,F ) and a linearly ordered

set S, a filtration on (W,F ) indexed by S is a family tFtutPS such that

(1) @t P S : Ft is a s-algebra ^ Ft Ñ F

(2) @t, s P S : t § s ñ Ft Ñ Fs

The most natural choices for the index set S are S := N, which is used mainly for
discrete-time processes, and S := [0, 8), which is pertinent to continuous-time pro-
cesses. A number of powerful limit theorems are associated with filtration; we will
discuss these when they become relevant.
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An important concept of probability is that of a random variable which, intuitively,
refers to a quantity that takes random values. The precise mathematical meaning of this
concept is nonetheless rather dry:

Definition 1.3 (Random variable) Let (X , S) be a measurable space — meaning that X
is a non-empty set and S is a s-algebra on X . An X -valued random variable X is then

a map X : W Ñ X which is F/S-measurable in the sense that

@B P S : X´1(B) P F . (1.4)

Here X´1(B) := tw : X(w) P Bu.

The most typical choice is X := R, in which case we simply talk about a random vari-
able, or X := Rd, when we talk of a random vector. In both of these cases we take S to be
the s-algebra of Borel sets, which is defined as the smallest s-algebra containing all open
sets. (This is achieved by intersecting all the s-algebras with this property while noting
that the intersection of any non-empty family of s-algebras is a s-algebra.) Notwith-
standing, as we shall see, the above framework permits talking about random functions,
random measures or random linear operators with no difficulty.

The measurability requirement is needed so that “X takes values in B,” abbreviated
using set theoretical notation as tX P Bu where

tX P Bu := X´1(B) (1.5)

are events for any measurable set B P S. In particular, we are allowed to write expres-
sions such as P(X P B), read as “ probability that X lies in B.” As is readily checked,

s(X) :=
 

tX P Bu : B P S
(

(1.6)

is a s-algebra as soon as S is a s-algebra. It can also be checked that s(X) is the least s-
subalgebra — or, equivalently, the intersection of all s-subalgebras — of F that make X
measurable. (The corresponding concept exists for multiple random variables as well;
we will discuss this in Chapter 3 of these notes.)

An additional benefit of requiring measurability is it enables the powerful theory of
the Lebesgue integral. While measurability is often deemed typical for functions consid-
ered in analysis, the fact that probability regards the underlying s-algebra a variable
parameter makes measurability easy to break (as well as restore).

We are now ready for the first important new concept in this course:

Definition 1.4 (Stochastic process) Let (X , S) be a measurable space and T a non-

empty set. An X -valued stochastic process over T is a family tXt : t P Ru of X -valued

random variables (defined on the same probability space).

One way to think of a stochastic process is as a random function X : T Ñ X defined,
for each w P W, as t fiÑ Xt(w). However, one has to be careful as not all the values of X
may be accessible at the same time due to measurability limitations. (We will explain
this in full depth in the next two lectures.)

A typical choice we will make is X := R and T := [0, 8). In this case we simply
talk about a stochastic process. The setting nonetheless includes a way to treat more
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complicated objects such as a random field, when T := Rd or a subset thereof, or even a
random measure, in which case T is a s-algebra and A fiÑ XA is countably additive in
the sense specified above.

1.2 Key examples: Poisson process and Brownian motion.

We will now give two examples of stochastic processes that will be periodically returned
to throughout the course. The first one of these is:

Definition 1.5 (Homogeneous Poisson process) A homogeneous Poisson process is an

N-valued stochastic process tNt : t P [0, 8)u on the non-negative reals such that

(1) N0 = 0
(2) @n • 1 @0 = t0 † t1 † ¨ ¨ ¨ † tn :

 
Nti ´ Nti´1 : i = 1, . . . , n

(
are independent (1.7)

(3) @0 § s † t : Nt ´ Ns = Poisson(t ´ s)
(4) every realization of t fiÑ Nt is right-continuous.

We use the convention that the naturals N contain zero. Recall that a random vari-
able Z is Poisson with parameter l ° 0 if it is N-valued and

@n P N : P(Z = n) =
ln

n!
e´l (1.8)

We also recall that random variables X1, . . . Xn are independent if for all B1, . . . , Bn P S,

P
⇣ n£

i=1

tXi P Biu
⌘
=

nπ

i=1

P(Xi P Bi) (1.9)

Intuitively, sampling one of several independent random variables does not affect the
statistics of the values of the others.

By one of the standard interpretations, the quantity Nt models the number of cus-
tomers arriving to the queue (or served) by time t (with no customers at time zero). The
process is piecewise constants; all jumps are by +1 a.s. The times of the jumps are exactly
the times when new customers arrive. The homogeneity refers to the fact that the distri-
bution of the increment Nt ´ Ns depends only on t ´ s. To depart from homogeneity, one
replaces t ´ s by G(t) ´ G(s) for G : [0, 8) Ñ [0, 8) a non-decreasing right-continuous
function. Customers then arrive according to intensity measure dG, which for the homo-
geneous process is simply the Lebesgue measure on [0, 8). All these considerations are
cosmetic on a technical level; indeed, the inhomogeneous process is realized from the
homogeneous one by taking tNG(t) : t P [0, 8)u.

Another important example of a stochastic process that we will be concerned with
in this course is Brownian motion. The name dates back to the observations by biologist
R. Brown in the 1820s of a jittery motion of pollen grains caused, as elucidated by A. Ein-
stein in 1905, by collisions with molecules of an ambient fluid. The probabilistic model
we will now present captures only some of the features of this problem; the full physics
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theory of this motion is rather complex and remains the subject of interesting mathe-
matical research to the present day; see E. Nelson’s “Dynamical Theories of Brownian
Motion” for an exposition of this problem.

The mathematical concept of Brownian motion goes back to N. Wiener (and is there-
fore sometimes alternatively referred to as the Wiener process):

Definition 1.6 (Brownian motion) A standard Brownian motion is a stochastic process

tBt : t P [0, 8)u on the non-negative reals such that

(1) B0 = 0
(2) @n • 1 @0 = t0 † t1 † ¨ ¨ ¨ † tn :

 
Bti ´ Bti´1 : i = 1, . . . , n

(
are independent (1.10)

(3) @0 § s † t : Bt ´ Bs = N (0, t ´ s)
(4) every realization of t fiÑ Bt is continuous.

Here we recall that N (µ, s2) denotes the normal (or Gaussian) random variable with
mean µ and variance s2. For s2

° 0 this (R-valued) random variable has a probability
density (with respect to the Lebesgue measure) which means that, for any Borel B Ñ R,

P
�
N (µ, s2) P B

�
=

ª

B

1
?

2ps2
e´ (x´µ)2

2s2 dx. (1.11)

In the degenerate case of zero variance, we have N (µ, 0) = µ with probability one.
Both the homogeneous Poisson process and the standard Brownian motion are ex-

amples of processes with independent increments. If in addition the distribution of the
increment only depends only the difference of the time, we talk about a Lévy process.
Lévy processes are naturally associated with the concept of infinitely divisible distribution
and the associated Lévy-Khinchin formula. (Usually, these are taught in 275B.) Still, the
above two examples are quite representative because, as shown by the Lévy-Khinchin
formula, each Lévy process can be thought of as a mixture of a Brownian motion and a
family of Poisson processes.

The standard Brownian motion is also an example of a Gaussian process, due to the
multivariate-normal nature of its finite dimensional distributions. What makes the Brow-
nian motion “standard” is the condition 1), which forces Bt to be centered and 3), where
the variance is equal t ´ s, not just proportional to it. (Changing these results in a process
that we refer to as a Brownian motion.)

The conditions 4) in the above definitions arehard to motivate a priori. The reasons
for imposing it is that it is these conditions that allow us to think of the realizations
t fiÑ Nt(w) and t fiÑ Bt(w) as random functions. Moreover, the conditions are needed if
we want to prove that the above processes, once constructed, are unique, in a suitable
sense. Again, we will say more in the forthcoming lectures.

Further reading: Chapter 2 in Øksendal, Chapter 1.1 of Karatzas-Shreve
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