HW#6: due Mon 3/18/2024

The following problems use the notation from class/class notes.

Problem 1: Prove the Feynman-Kac formula: Let $u \in C^{1,2}((0,\infty) \times \mathbb{R}^d) \cap C([0,\infty) \times \mathbb{R}^d)$ be bounded and such that, for some bounded continuous $V \colon \mathbb{R}^d \to \mathbb{R}$,

$$\forall t > 0 \,\forall x \in \mathbb{R}^d$$
: $\frac{\partial u}{\partial t}(t, x) = \frac{1}{2}\Delta u(t, x) + V(x)u(t, x)$

Then

$$u(t,x) = E^{x} \left(u(0,B_{t}) \exp\left\{ \int_{0}^{t} V(B_{s}) \mathrm{d}s \right\} \right)$$

where *B* is a standard Brownian motion that, under E^x , is started from $B_0 = x$.

Problem 2: Let $D \subseteq \mathbb{R}^2$ be non-empty and open and assume $x_0 \in \partial D$ is such that there is a continuous injective map (a simple curve) $\gamma : [0, \infty) \to \mathbb{R}^2$ with

$$\gamma([0,\infty)) \subseteq \mathbb{R}^2 \setminus D \land \gamma(0) = x_0 \land \lim_{t \to \infty} \gamma(t) = \infty$$

Prove that x_0 is regular.

Hint : Use that, for each annulus $A_r := \{x \in \mathbb{R}^2 : r < |x - x_0| < 3r\}$, with positive probability that does not depend on r, the Brownian motion started at x_0 "draws" a "closed loop" inside $A_{r,R}$ after hitting the mid-circle $\{x \in \mathbb{R}^2 : |x - x_0| = 2r\}$. Then employ stopping time arguments to show that the curve $\gamma([0, \infty))$ is hit instantaneously.

Problem 3: KARATZAS-SHREVE EX 2.26, PAGE 299

Problem 4: KARATZAS-SHREVE EX 2.27, PAGE 299

Problem 5: Let σ : $\mathbb{R} \to \mathbb{R}$ be a Borel function. Prove that solutions to the SDE

$$\mathrm{d}X_t = \sigma(X_t)\mathrm{d}B_t,$$

cannot explode in finite time. More precisely, if $\{X_t : t \in [0, \tau_{\infty})\}$ is a weak solution to this SDE and

 $\tau_n := \inf\{t \ge 0 \colon |X_t| \ge n\}$

then $\tau_{\infty} := \lim_{n \to \infty} \tau_n$ (called the "explosion time") obeys $\tau_{\infty} = \infty$ a.s.

Problem 6: Let $\theta > 1$ and consider the SDE

$$\mathrm{d}X_t = (X_t^+)^{\theta} \mathrm{d}t + \mathrm{d}B_t$$

Prove that any solution started from $X_0 > 0$ explodes with positive probability (in fact, with probability one).

Hint: Write the SDE in ODE form and compare it with an ODE that can be solved explicitly, assuming that *B* is suitably controlled via a stopping time.