HW#4: due Fri 2/16/2024

The first couple of problems deal with Itô integral on the space \mathcal{V}^{loc} of jointlymeasurable, adapted processes *Y* that are locally square integrable a.s. The rest of the exercises give some practice of the notion of (semi)martingales.

Problem 1: ØKSENDAL EX 3.2, PAGE 38

Problem 2: For $Y \in \mathcal{V}^{\text{loc}}$ associated with Brownian motion *B* and Brownian filtration $\{\mathcal{F}_t\}_{t\geq 0}$ and u > 0, denote

$$\widetilde{Y}_s := Y_{u+s}, \ \widetilde{B}_s := B_{u+s} - B_u \quad \text{ and } \ \widetilde{\mathcal{F}}_s := \mathcal{F}_{u+s}.$$

Prove that $\{\widetilde{\mathcal{F}}_t\}_{t\geq 0}$ is a Brownian filtration for Brownian motion \widetilde{B} and $\widetilde{Y} \in \widetilde{\mathcal{V}^{\text{loc}}}$, for $\widetilde{\mathcal{V}^{\text{loc}}}$ defined using the filtration $\{\widetilde{\mathcal{F}}_t\}_{t>0}$. Moreover, for each $t \geq u$,

$$\int_0^t Y_s \, \mathrm{d}B_s = \int_0^u Y_s \, \mathrm{d}B_s + \int_0^{t-u} \widetilde{Y}_s \, \mathrm{d}\widetilde{B}_s \quad \text{a.s.}$$

Problem 3: Let $Y \in \mathcal{V}^{\text{loc}}$ be associated with Brownian motion *B* and Brownian filtration $\{\mathcal{F}_t\}_{t\geq 0}$ which we assume is such that \mathcal{F}_0 contains all *P*-null sets. Prove that

$$\forall t \geq 0$$
: $\int_0^t Y_s dB_s$ is \mathcal{F}_t -measurable

and, assuming $Y \in \mathcal{V}$, the conditional Itô isometry

$$E\left(\left(\int_{u}^{t} Y_{s} \, \mathrm{d}B_{s}\right)^{2} \middle| \mathcal{F}_{u}\right) = E\left(\int_{u}^{t} Y_{s}^{2} \, \mathrm{d}s \middle| \mathcal{F}_{u}\right) \quad \text{a.s}$$

holds for all $u \in [0, 1]$. Here $\int_u^t Y_s dB_s := \int_0^t Y_s dB_s - \int_0^u Y_s dB_s$.

Problem 4: Prove that, for any $\{Y^{(n)}\}_{n \in \mathbb{N}} \in (\mathcal{V}^{\text{loc}})^{\mathbb{N}}$ and $Y \in \mathcal{V}^{\text{loc}}$ and any $t \ge 0$,

$$\int_0^t [Y_s^{(n)} - Y_s]^2 \mathrm{d}s \xrightarrow[n \to \infty]{} 0$$

implies

$$\int_0^t Y_s^{(n)} \, \mathrm{d}B_s \xrightarrow[n \to \infty]{} \int_0^t Y_s \, \mathrm{d}B_s$$

This is a statement of continuity for Itô integral on \mathcal{V}^{loc} .

Problem 5: Writing λ for the Lebesgue measure on $[0, \infty)$, prove that for all $Y, Y \in \mathcal{V}^{\text{loc}}$ and $t \ge 0$ (and assuming continuous versions of the integrals), the events

$$\forall u \leq t: \quad \int_0^u Y_s \, \mathrm{d}B_s = \int_0^u \widetilde{Y}_s \, \mathrm{d}B_s$$

and

$$\left\{\omega\in\Omega\colon\lambda\big(\{s\in[0,t]\colon Y_s(\omega)\neq\widetilde{Y}_s(\omega)\}\big)=0\right\}$$

differ by a *P*-null set. (This is a variation on Øksendal ex. 3.15 page 41)

Problem 6: Let $\{M_t: t \ge 0\}$ be a continuous local martingale such that, for some $t \ge 0$,

$$W_t^{(1)}(M) < \infty$$
 a.s.

Prove that then

$$P(\forall s \in [0,t] \colon M_s = M_0) = 1$$

You may use that a continuous martingale stopped at a stopping time is a martingale.

Problem 7: ØKSENDAL EX 3.12, PAGE 40

Problem 8: Let *X* be a semimartingale and *Z* an adapted, jointly measurable process such that $\int_0^t Z_s dX_s$ exists for all $t \ge 0$. Prove that for all $t \ge u \ge 0$ and any random variable *W*,

Win \mathcal{F}_u -measurable $\Rightarrow W \int_u^t Z_s \, \mathrm{d}X_s = \int_u^t W Z_s \, \mathrm{d}X_s$ a.s. Here $\int_u^t Z_s \, \mathrm{d}X_s := \int_0^t Z_s \, \mathrm{d}X_s - \int_0^u Z_s \, \mathrm{d}X_s$.