HW#2: due Fri 1/26/2024

This problem set focuses on standard Borel spaces and then measurability issues associated with families of random variables.

Problem 1: Let (\mathscr{X}, Σ) be a standard Borel space — namely, \mathscr{X} is a complete, separable metric space and Σ is the σ -algebra of its Borel sets. Prove that $(\mathscr{X}^n, \Sigma^{\otimes n})$ is standard Borel for each natural $n \ge 1$.

Problem 2: Let $C([0,\infty))$ be the space of continuous functions $[0,\infty) \to \mathbb{R}$. Define $\varrho(f,g) := \sum_{n \ge 1} 2^{-n} \sup_{0 \le t \le n} |f(t) - g(t)| \land 1$

Prove that ϱ is a metric that makes $C([0, \infty))$ complete and separable, and thus Polish.

Problem 3: Next, as a review, prove the following standard claims about the preimage map: Let $X: \Omega \to \mathscr{X}$ be a function. Then

(1) for each σ -algebra Σ on \mathscr{X} ,

 $\{ \{ X \in B \} : B \in \Sigma \}$ is a σ -algebra on Ω

(2) for each σ -algebra \mathcal{F} on Ω ,

 $\{B: B \subseteq \mathscr{X} \land \{X \in B\} \in \mathcal{F}\}$ is a σ -algebra on \mathscr{X}

Problem 4: Let *T* be a set and let $\{X_t : t \in T\}$ be a family of random variables. Prove $\sigma(X_t : t \in T) = \bigcup_{\substack{S \subset T \\ \text{countable}}} \sigma(X_t : t \in S)$

Problem 5: Use the previous exercise to show that, given an \mathbb{R} -valued stochastic process $\{X_t: t \in [0, \infty)\}$ realized via coordinate projections on $(\mathbb{R}^{[0,\infty)}, \mathcal{B}(\mathbb{R})^{\otimes [0,\infty)})$, we have

 $\{t \mapsto X_t \text{ is continuous}\} \notin \sigma(X_t: t \in [0, \infty))$

Show also that for any $A \in \sigma(X_t: t \in [0, \infty))$,

 $A \subseteq \{t \mapsto X_t \text{ is continuous}\} \Rightarrow A = \emptyset$

and thus $\{t \mapsto X_t \text{ is continuous}\}$ is not equivalent to a non-trivial measurable set under any probability measure *P* on $(\mathbb{R}^{[0,\infty)}, \mathcal{B}(\mathbb{R})^{\otimes [0,\infty)})$.