HW#1: due Fri 1/19/2024

This problem sets starts pretty lightly by a collection of problems on the homogeneous Poisson process and standard Brownian motion defined in the first lecture. The last two problems are a standard exercises in measure theory.

Problem 1: Consider the homogeneous Poisson process $\{N_t : t \ge 0\}$ as defined in class. Prove that, with probability one, all jumps of *N* are by +1. *Hint:* First prove that *N* is non-decreasing a.s. and then discretize time suitably. Note how (as it should) right-continuity enters your argument.

Problem 2: ØKSENDAL EX 2.8, PAGE 17

Problem 3: Prove that conditions 2-3 in our definition of standard Brownian motion — namely, the independence of increments along with $B_t - B_s = \mathcal{N}(0, |t - s|)$ — are equivalent to

 $\{B_t: t \ge 0\}$ is Gaussian with $\forall t, s \ge 0: EB_t = 0 \land E(B_tB_s) = t \land s$

Here we recall that a stochastic process $\{X_t : t \in T\}$ is said to be Gaussian (a.k.a. multivariate normal) if for any $\lambda : T \to \mathbb{R}$ with $\{t \in T : \lambda(t) \neq 0\}$ finite, the (effectively finite) sum $\sum_{t \in T} \lambda(t) X_t$ is (univariate) normal.

Problem 4: A *d*-dimensional Brownian motion $\{B_t : t \ge 0\}$ is an \mathbb{R}^d -valued process whose Cartesian components are independent standard Brownian motions. Let

$$L(A) = \int_0^\infty \mathbb{1}_{\{B_s \in A\}} \mathrm{d}s$$

be the total time spent by the process in a Borel set *A*. (Check that this is well defined.) Prove that if *A* is a Lebesgue null set, then L(A) = 0 a.s. (This is Øksendal ex. 2.14 page 19. The random object *L* is the *occupation time* measure.)

Problem 5: Let $\{B_t: t \ge 0\}$ be the *d*-dimensional Brownian motion and let *U* be an orthogonal matrix. Show that also UB_t is a *d*-dimensional Brownian motion. (This is \emptyset ksendal ex. 2.15 page 19. The process is thus rotationally invariant.)

Problem 6: As a review, prove the (what the textbook calls) Doob-Dynkin lemma: If *X* is an \mathbb{R} -valued random variable and *Y* is $\sigma(X)$ -measurable, then there exists a Borel measurable $f \colon \mathbb{R} \to \mathbb{R}$ such that Y = f(X).

Problem 7: Prove that if \mathscr{X} is a complete and separable metric space endowed with the σ -algebra Σ of its Borel sets, then every probability measure μ on (\mathscr{X}, Σ) is inner regular in the sense

$$\forall A \in \Sigma: \quad \mu(A) = \sup \{ \mu(C) \colon C \subseteq A \text{ compact} \}$$

It may help to observe first that if we extend the infimum to closed sets, then this is true with no assumptions on the metric/topology of \mathscr{X} .