MATH 275C

Lecture 1: March 31, 2025



Topics treated in 275A+B
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Kolmogorov’s model of probability inside measure theory
Integration, expectation, variance, moments
Independence and product measures

Basic convergence theorems: WLLN, SLLN, random series
Weak convergence of prob. measures/random variables
Characteristic function and Central Limit Theorem

Quantitative CLTs: Lindeberg and Stein methods

Stable convergence and stable laws

Infinite divisibility & Lévy-Khinchin formula
Conditional expectation and probability

Uniform integrability

Martingales: convergence, optional stopping, etc
Exchangeability & de Finetti theorem

von Neumann/Birkhoff’s Ergodic Theorems, ergodicity



Topics to cover in 275C

Wrapping up ergodic theory started in 275B
Discrete-time Markov chains, random walks
Continuous-time processes: Renewals, Markov chains

Processes with independent increments: Brownian motion
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General Markov processes



Measure preserving systems

Motivated by Boltzmann’s Ergodic Hypothesis, we introduced:

Definition: Let (27, G, it) be a measure space. A map
¢: & — Z is a measure preserving transformation (m.p.t.) if

o ¢ is measurable (i.e., 9~ 1(G) € G)

o @ preserves p (i.e., po @~ = u)
We call (27, G, i, ¢) a measure preserving system (m.p.s.)



Examples I

e Hamiltonian flow: Let t — (q1(t),...,ga(f), p1(t), ..., pu(t))
solve the ODEs

dgi _oH 4 dpi _ _OH
dt  p; dt 0q;

where H € C?(R?") is the Hamiltonian

Liouville’s theorem: Let t > 0. Then ¢: R*" — R?" defined by
(q(0),p(0)) == (q(t), p(t))

preserves the Lebesgue measure on R?"

Note: The flow leaves H constant so even the “surface
measure” on {H = E} preserved for each E



Examples II

e Stationary sequences: Let (S, X) := measurable space and
{Xk}k=0 := S-valued random variables on a probability space
(Q, F, P) such that

Vi k=00 X, Xosk) 2 (Xo, ..., Xp)

Denoting X := {X}r>0, the map X: Q — SN pushes Pto a
probability measure y on (SN, Z®N)_ The left shift 0: SN — SN
defined by

0 ({xc}i=0) = {Xks1 =0
is an m.p.t. on (SN, Z®N 1))

Examples: i.i.d., stationary Markov chains, etc



Examples III

e Rotation of a circle: 2" :=[0,1), G := B([0,1)). Then
@(x) :=x+amod1

preserves j := Lebesgue measure for each &« € R

e Continued fractions: 2" :=[0,1]\ Q, G := B(2"). Then

preserves p(dx) := 17 xdx Name stems from representation

X =

on which ¢ acts as (a1,42,...) — (a,a3,...)



Examples IV

e Baker’s transform: 2" :=[0,1) x [0,1), G = B(Z"). Then

(x,y) = (2x,%y), fo<x<
et (2x-1,3(y+1)), iflh<x<l1

preserves y:= Lebesgue measure.

G222

|
1 A
Coded by Bernoulli’s:

X X
x:Zznfl and ]/222:;

n=0 n<0

Then ¢ acts as a left shift on {X, },cz



von Neumann’s Mean Ergodic Theorem

Note: ¢ = m.p.t. = Tf(x) := f o ¢ obeys |Tf|, = |fl|,

Definition: A linear map T: B — B on Banach space Bis a
contraction if |Tf|| < |f| forallf € B

Theorem (Mean Ergodic Theorem)
Let T be contraction on Hilbert space H. Then

1n—1 .
VfeH: nkZ_OTf — Pf

n—0o0

where P := orthogonal projection on Ker(1 —T)

Idea: Easy to check for f := g + h — Th with T¢g = g. Then need
{g+h—Th:h,geH, Tg = g} densein H

Note: Extends to all reflexive Banach spaces



Birkhoft’s Pointwise Ergodic Theorem

Theorem (Pointwise Ergodic Theorem)

Let (Z,G,u, ) := m.p.s. with u(2") < co. Then Vf € L' 3f e L!:
1 n—1
fooqok — f  pae &inL!
n k=0 n—aoo

Moreover, f o ¢ = f y-a.e. and |f|1 < ||f|1

“Proof of the Ergodic Theorem” by G.D. Birkhoff, PNAS 1931



Maximal Ergodic Theorem

Theorem (Maximal Ergodic Theorem)

Let (%,G,u) := measure space and let T: L' — L' bea
positivity-preserving contraction. For f € L', denote

. 1;171 .
f .supnkZ%Tf

n=1

J fdu =0
{f+>0}

Then

Wiener 1939, Yoshida & Kakutani 1939
A slick proof by Garsia 1965
We will give a different argument later



Key consequence

Corollary
Suppose T as above and also u(Z") < 0. Then

n—oo n

1 n—1
{f eL': lim ~ Z T¥f exists a.e.} is closed in L!
k=0

Proof: For h € L! abbreviate A h := 1 ZZ;& T*h and observe
|Anh| < Aplh|. This implies

{limsup [Anh| > €} < {|h]* > €}

n—0o0

and (|h| —€)* = |h|* — e. Maximal Ergodic Theorem gives
f (|]’l| - G)d]/l = 0 Need y(X) < o0 here!
implying [h]*—e
N 1
R > €) < 2

This is a maximal inequality as in Hardy-Littlewood, Doob, etc



Now consider {f;} such that f; — f in L! and f; := lim, .o, Ayfi
exists a.e. for all k > 1. The above shows

fi—e< 11m mfAnf <limsupA.f <fy +e ae.

n—aoo

on {|fy — f|* < €} and thus, by the maximal inequality,

U (hm sup A, f — hm 1nf Anf > Ze)

<#(Ife~f1" =€) < Zlfe~fh

Taking k — o0 we get that lim,,_,, A, f exists a.e.



Spatial Ergodic Theorem

Theorem (Spatial Ergodic Theorem)

Suppose (2, G, u) (with u(Z") possibly infinite) and, given d > 1,
let p1,..., ¢ bem.p.t.’son (Z,G,u). Assume @1, ..., ¢z commute,

Vijj=1,...,d: ¢iop; = @jo@

For all f € L there exists f € L' such that for any sets { A, },>1 with

Vn=1: @ # A, < [0,n) 24

and
A, A
11mg)1f|d|>0/\hoo|a ”|:0
n— n—
we have " "
|An’ xg fo ¢x n—>CD f a.e.

where ¢y, ) = @1 00 @t If u(2°) < o, then the

.....

convergence is also in L




Maximal inequality via Wiener covering lemma

Lemma (Maximal inequality in 7%

Given h: Z% — R and n > 1, denote B, (x) := x + [0,n)% n Z9. Set

n(x) == Z |h(z)
k:1, .,n zeBk(x)
Then
YA >0:  [{xeBu(0): hj(x) > A} < Z |h(z)

ZGan

Proof: The set {x € B,(0): h;;(x) > A} is covered by

{Bk(x): x € B,(0), k Z \h | > ABy(x }

XEBk

Enumerate as B}, ..., B™ decreasingly in size with “lower-left”

corner of B denoted as x;. Set B/ := x; + [-n,2n)4 n Z%. Next
identify indices iy, . . ., i; as follows:



Setiy :=1.1f iy,...,i; defined, let
fjp1 :=min{i > ij: x; ¢ B U .- U B}

if such i exists; otherwise set g := j and terminate. Then
q ~ .
{xeBu(0): Iy(x) > A} < | JBY
j=1

and _ '
B",...,B" are disjoint

because B n Bit # (5 for k < £ would imply B < B, in
contradiction with x;, ¢ B¥. Now compute ...



.. using the fact that |Bi| = 37|Bi| to get

9 q

|[{x € By (0): hy(x) > A} < D [Bi| =37 |B]
j=1 j=1
3 J ¥
<TL L3 3 el
: XEB] XEan(O)

where we also used B, ...,Bi < B2, (0)



Maximal inequality on measure space

Corollary
ForfeLY(2,G,u), set
fri= Z [l o ¢x
nz xeBn(O)
Then

N 6
VA0 u(f > A) < flh

Proof: Abbreviate M,,f := maxy_1,__, IBSW 2xeB,0) If © @x-

Lemma with h(x) := f o ¢y and I}, (x) = M,f o ¢, gives

U(Myf > A) = (0): Myf © @x > A}|dp

d

X€By, (0)

Now take n — o

<3 EON f > flopean =5 [ian



Proof of Spatial Ergodic Theorem

Maximal inequality shows

{f eL!: nh% m Z f o @y exists a.e. } is closed in L!
xeA,

Now use that the limit exists and is independent of {A,} for
every element of

d
{ Zh hio;): g,hl,...,hdeLl/\Vizl,...,d:g:gO(pl}

which is dense in L! O



TO BE CONTINUED ON WEDNESDAY ...



