Lecture 1: March 31, 2025

MATH 275C

- Kolmogorov's model of probability inside measure theory
- Integration, expectation, variance, moments
- Independence and product measures
- Basic convergence theorems: WLLN, SLLN, random series
- Weak convergence of prob. measures/random variables
- Characteristic function and Central Limit Theorem
- Quantitative CLTs: Lindeberg and Stein methods
- Stable convergence and stable laws
- Infinite divisibility & Lévy-Khinchin formula
- Conditional expectation and probability
- Uniform integrability
- Martingales: convergence, optional stopping, etc
- Exchangeability & de Finetti theorem
- von Neumann/Birkhoff's Ergodic Theorems, ergodicity

- Wrapping up ergodic theory started in 275B
- Discrete-time Markov chains, random walks
- Continuous-time processes: Renewals, Markov chains
- Processes with independent increments: Brownian motion
- General Markov processes

Motivated by Boltzmann's Ergodic Hypothesis, we introduced:

Definition: Let $(\mathcal{X}, \mathcal{G}, \mu)$ be a measure space. A map $\varphi \colon \mathcal{X} \to \mathcal{X}$ is a **measure preserving transformation** (m.p.t.) if

- φ is measurable (i.e., $\varphi^{-1}(\mathcal{G}) \subseteq \mathcal{G}$)
- φ preserves μ (i.e., $\mu \circ \varphi^{-1} = \mu$)

We call $(\mathcal{X}, \mathcal{G}, \mu, \varphi)$ a **measure preserving system** (m.p.s.)

• Hamiltonian flow: Let $t \mapsto (q_1(t), \dots, q_n(t), p_1(t), \dots, p_n(t))$ solve the ODEs

$$\frac{\mathrm{d}q_i}{\mathrm{d}t} = \frac{\partial H}{\partial p_i}$$
 and $\frac{\mathrm{d}p_i}{\mathrm{d}t} = -\frac{\partial H}{\partial q_i}$

where $H \in C^2(\mathbb{R}^{2n})$ is the **Hamiltonian**

Liouville's theorem: Let t > 0. Then $\varphi : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ defined by

$$\varphi(q(0),p(0)):=(q(t),p(t))$$

preserves the Lebesgue measure on \mathbb{R}^{2n}

Note: The flow leaves H constant so even the "surface measure" on $\{H = E\}$ preserved for each E

• Stationary sequences: Let (S, Σ) := measurable space and $\{X_k\}_{k\geqslant 0}$:= S-valued random variables on a probability space (Ω, \mathcal{F}, P) such that

$$\forall n, k \geqslant 0: (X_n, \ldots, X_{n+k}) \stackrel{\text{law}}{=} (X_0, \ldots, X_k)$$

Denoting $X := \{X_k\}_{k \geqslant 0}$, the map $X \colon \Omega \to S^{\mathbb{N}}$ pushes P to a probability measure μ on $(S^{\mathbb{N}}, \Sigma^{\otimes \mathbb{N}})$. The **left shift** $\theta \colon S^{\mathbb{N}} \to S^{\mathbb{N}}$ defined by

$$\theta(\lbrace x_k\rbrace_{k\geqslant 0})=\lbrace x_{k+1}\rbrace_{k\geqslant 0}$$

is an m.p.t. on $(S^{\mathbb{N}}, \Sigma^{\otimes \mathbb{N}}, \mu)$

Examples: i.i.d., stationary Markov chains, etc

• Rotation of a circle: $\mathscr{X} := [0,1), \mathcal{G} := \mathcal{B}([0,1))$. Then

$$\varphi(x) := x + \alpha \bmod 1$$

preserves $\mu :=$ Lebesgue measure for each $\alpha \in \mathbb{R}$

• Continued fractions: $\mathscr{X} := [0,1] \setminus \mathbb{Q}$, $\mathcal{G} := \mathcal{B}(\mathscr{X})$. Then

$$\varphi(x) := \frac{1}{x} - \left\lfloor \frac{1}{x} \right\rfloor$$

preserves $\mu(dx) := \frac{1}{1+x}dx$. Name stems from representation

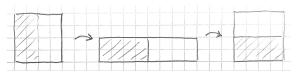
$$x = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4 + \dots}}}}$$

on which φ acts as $(a_1, a_2, \dots) \mapsto (a_2, a_3, \dots)$

• Baker's transform: $\mathscr{X} := [0,1) \times [0,1)$, $\mathcal{G} = \mathcal{B}(\mathscr{X})$. Then

$$\varphi(x,y) = \begin{cases} (2x, \frac{1}{2}y), & \text{if } 0 \leq x < \frac{1}{2} \\ (2x - 1, \frac{1}{2}(y + 1)), & \text{if } \frac{1}{2} \leq x < 1 \end{cases}$$

preserves μ := Lebesgue measure.



Coded by Bernoulli's:

$$x = \sum_{n \ge 0} \frac{X_n}{2^{n+1}}$$
 and $y = \sum_{n < 0} \frac{X_n}{2^{-n}}$

Then φ acts as a left shift on $\{X_n\}_{n\in\mathbb{Z}}$

Note: $\varphi = \text{m.p.t.} \Rightarrow Tf(x) := f \circ \varphi \text{ obeys } ||Tf||_p = ||f||_p$

Definition: A linear map $T: \mathcal{B} \to \mathcal{B}$ on Banach space \mathcal{B} is a **contraction** if $||Tf|| \le ||f||$ for all $f \in \mathcal{B}$

Theorem (Mean Ergodic Theorem)

Let T be contraction on Hilbert space \mathcal{H} . Then

$$\forall f \in \mathcal{H}: \quad \frac{1}{n} \sum_{k=0}^{n-1} T^k f \xrightarrow[n \to \infty]{} Pf$$

where P := orthogonal projection on Ker(1 - T)

Idea: Easy to check for f := g + h - Th with Tg = g. Then need

$$\{g+h-Th\colon h,g\in\mathcal{H},\,Tg=g\}$$
 dense in \mathcal{H}

Note: Extends to all **reflexive** Banach spaces

Theorem (Pointwise Ergodic Theorem)

Let $(\mathcal{X}, \mathcal{G}, \mu, \varphi) := m.p.s.$ with $\mu(\mathcal{X}) < \infty$. Then $\forall f \in L^1 \exists \bar{f} \in L^1$:

$$\frac{1}{n} \sum_{k=0}^{n-1} f \circ \varphi^k \xrightarrow[n \to \infty]{} \bar{f} \qquad \mu\text{-a.e. \& in } L^1$$

Moreover,
$$\bar{f} \circ \varphi = \bar{f} \mu$$
-a.e. and $\|\bar{f}\|_1 \leqslant \|f\|_1$

"Proof of the Ergodic Theorem" by G.D. Birkhoff, PNAS 1931

Theorem (Maximal Ergodic Theorem)

Let $(\mathcal{X}, \mathcal{G}, \mu) :=$ measure space and let $T: L^1 \to L^1$ be a positivity-preserving contraction. For $f \in L^1$, denote

$$f^* := \sup_{n \geqslant 1} \frac{1}{n} \sum_{k=0}^{n-1} T^k f$$

Then

$$\int_{\{f^{\star}>0\}}f\mathrm{d}\mu\geq0$$

Wiener 1939, Yoshida & Kakutani 1939 A slick proof by Garsia 1965 We will give a different argument later

Corollary

Suppose T as above and also $\mu(\mathscr{X}) < \infty$. Then

$$\left\{ f \in L^1 : \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} T^k f \text{ exists a.e.} \right\}$$
 is closed in L^1

Proof: For $h \in L^1$ abbreviate $A_n h := \frac{1}{n} \sum_{k=0}^{n-1} T^k h$ and observe $|A_n h| \leq A_n |h|$. This implies

$$\left\{\limsup_{n\to\infty}|A_nh|>\epsilon\right\}\subseteq\left\{|h|^*>\epsilon\right\}$$

and $(|h| - \epsilon)^* = |h|^* - \epsilon$. Maximal Ergodic Theorem gives

This is a maximal inequality as in Hardy-Littlewood, Doob, etc

Now consider $\{f_k\}$ such that $f_k \to f$ in L^1 and $\bar{f}_k := \lim_{n \to \infty} A_n f_k$ exists a.e. for all $k \ge 1$. The above shows

$$\bar{f}_k - \epsilon \leqslant \liminf_{n \to \infty} A_n f \leqslant \limsup_{n \to \infty} A_n f \leqslant \bar{f}_k + \epsilon$$
 a.e.

on $\{|f_k - f|^* \le \epsilon\}$ and thus, by the maximal inequality,

$$\mu\left(\limsup_{n\to\infty} A_n f - \liminf_{n\to\infty} A_n f > 2\epsilon\right)$$

$$\leq \mu\left(|f_k - f|^* > \epsilon\right) \leq \frac{1}{\epsilon} ||f_k - f||_1$$

Taking $k \to \infty$ we get that $\lim_{n\to\infty} A_n f$ exists a.e.

Theorem (Spatial Ergodic Theorem)

Suppose $(\mathcal{X}, \mathcal{G}, \mu)$ (with $\mu(\mathcal{X})$ possibly infinite) and, given $d \ge 1$, let $\varphi_1, \ldots, \varphi_d$ be m.p.t.'s on $(\mathcal{X}, \mathcal{G}, \mu)$. Assume $\varphi_1, \ldots, \varphi_d$ commute,

$$\forall i, j = 1, \ldots, d$$
: $\varphi_i \circ \varphi_j = \varphi_j \circ \varphi_i$

For all $f \in L^1$ there exists $\bar{f} \in L^1$ such that for any sets $\{\Lambda_n\}_{n \ge 1}$ with

$$\forall n \geqslant 1 : \emptyset \neq \Lambda_n \subseteq [0, n)^d \cap \mathbb{Z}^d$$

and

$$\liminf_{n\to\infty}\frac{|\Lambda_n|}{n^d}>0 \wedge \lim_{n\to\infty}\frac{|\partial\Lambda_n|}{n^d}=0$$

we have

$$\frac{1}{|\Lambda_n|} \sum_{x \in \Lambda_n} f \circ \varphi_x \xrightarrow[n \to \infty]{} \bar{f} \quad \text{a.e.}$$

where $\varphi_{(x_1,...,x_n)} := \varphi_1^{x_1} \circ \cdots \circ \varphi_d^{x_d}$. If $\mu(\mathscr{X}) < \infty$, then the convergence is also in L^1

Lemma (Maximal inequality in \mathbb{Z}^d)

Given $h: \mathbb{Z}^d \to \mathbb{R}$ and $n \ge 1$, denote $B_n(x) := x + [0, n)^d \cap \mathbb{Z}^d$. Set

$$h_n^{\star}(x) := \sup_{k=1,\dots,n} \frac{1}{|B_k(x)|} \sum_{z \in B_k(x)} |h(z)|$$

Then

$$\forall \lambda > 0: \quad \left| \left\{ x \in B_n(0) : h_n^{\star}(x) > \lambda \right\} \right| \leqslant \frac{3^d}{\lambda} \sum_{z \in B_{2n}} \left| h(z) \right|$$

Proof: The set $\{x \in B_n(0) : h_n^*(x) > \lambda\}$ is covered by

$$\left\{ B_k(x) : x \in B_n(0), k = 1, \dots, n, \sum_{x \in B_k(x)} |h(z)| > \lambda B_k(x) \right\}$$

Enumerate as B^1, \ldots, B^m decreasingly in size with "lower-left" corner of B^i denoted as x_i . Set $\widetilde{B}^i := x_i + [-n, 2n)^d \cap \mathbb{Z}^d$. Next identify indices i_1, \ldots, i_q as follows:

Set $i_1 := 1$. If i_1, \ldots, i_j defined, let

$$i_{j+1} := \min\{i > i_j \colon x_i \notin \widetilde{B}^{i_1} \cup \cdots \cup \widetilde{B}^{i_j}\}$$

if such i exists; otherwise set q := j and terminate. Then

$$\{x \in B_n(0) : h_n^{\star}(x) > \lambda\} \subseteq \bigcup_{j=1}^q \widetilde{B}^{i_j}$$

and

$$B^{i_1}, \ldots, B^{i_q}$$
 are disjoint

because $B^{i_k} \cap B^{i_\ell} \neq \emptyset$ for $k < \ell$ would imply $B^{i_\ell} \subseteq \widetilde{B}^{i_k}$, in contradiction with $x_{i_\ell} \notin \widetilde{B}^{i_k}$. Now compute . . .

... using the fact that $|\widetilde{B}^i| = 3^d |B^i|$ to get

$$|\{x \in B_n(0) : h_n^{\star}(x) > \lambda\}| \leq \sum_{j=1}^q |\widetilde{B}^{i_j}| = 3^d \sum_{j=1}^q |B^{i_j}|$$
$$\leq \frac{3^d}{\lambda} \sum_{j=1}^q \sum_{x \in B_{2n}^{i_j}} |h(z)| \leq \frac{3^d}{\lambda} \sum_{x \in B_{2n}(0)} |h(z)|$$

where we also used $B^{i_1}, \ldots, B^{i_q} \subseteq B_{2n}(0)$

Corollary

For $f \in L^1(\mathcal{X}, \mathcal{G}, \mu)$, set

$$f^{\star} := \sup_{n \geqslant 1} \frac{1}{|B_n(0)|} \sum_{x \in B_n(0)} |f| \circ \varphi_x$$

Then

$$\forall \lambda > 0: \quad \mu(f^* > \lambda) \leqslant \frac{6^d}{\lambda} ||f||_1$$

Proof: Abbreviate $M_n f := \max_{k=1,\dots,n} \frac{1}{|B_k(0)|} \sum_{x \in B_n(0)} |f| \circ \varphi_x$. Lemma with $h(x) := f \circ \varphi_x$ and $h_n^*(x) = M_n f \circ \varphi_x$ gives

$$\mu(M_n f > \lambda) = \frac{1}{|B_n(0)|} \int |\{x \in B_n(0) : M_n f \circ \varphi_x > \lambda\}| d\mu$$

$$\leq \frac{3^d}{\lambda} \frac{1}{|B_n(0)|} \int \sum_{x \in B_n(0)} |f| \circ \varphi_x d\mu = \frac{6^d}{\lambda} \int |f| d\mu$$

Now take $n \to \infty$

Maximal inequality shows

$$\left\{ f \in L^1 \colon \lim_{n \to \infty} \frac{1}{|\Lambda_n|} \sum_{x \in \Lambda_n} f \circ \varphi_x \text{ exists a.e.} \right\} \text{ is closed in } L^1$$

Now use that the limit exists and is independent of $\{\Lambda_n\}$ for every element of

$$\left\{g + \sum_{i=1}^{d} (h_i - h_i \circ \varphi_i) \colon g, h_1, \dots, h_d \in L^1 \land \forall i = 1, \dots, d \colon g = g \circ \varphi_i\right\}$$

which is dense in L^1

TO BE CONTINUED ON WEDNESDAY ...