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30. STATIONARY MEASURES

Having discussed the setting of Markov chain theory, we now move to studying the
chains themselves. Here we develop the notion of stationary measures that plays a cen-
tral role for both theory development and practical considerations.

30.1 Definitions.

Suppose tXnun•0 is a Markov chain with initial distribution µ. This tells us the law of X0
so the natural question is: What is the law of Xn? And, does the law converge as n Ñ 8?
To answer the first question, we introduce the following notations: Given a measure µ
and a transition probability p on (S, S), denote by µP the measure

µP(A) :=
ª

µ(dx)p(x, A) (30.1)

This can be iterated to define µPn recursively by µPn+1 := (µPn)P. Note that the total
mass of µP is that of µ. Specializing to µ being a Dirac delta, we can also define the
iterations of the transition kernel itself. Indeed, we define p0(x, dy) := dx(dy) and,
recursively for all n • 0,

pn+1(x, A) :=
ª

pn(x, dz)p(z, A) (30.2)

for all A P S. When S is countable, we write Pn for the iterations of P defined, again,
recursively by

Pn+1(x, y) :=
ÿ

zPS
Pn(x, z)P(z, y) (30.3)

with P0(x, y) = dx,y. With these notations in place, we have:

Lemma 30.1 Let tXnun•0 be a Markov chain with transition probability p and initial distri-
bution µ. Then

Pµ(Xn P B) = µPn(B) (30.4)

holds for all B P S and all n • 0.

Proof. This follows from the calculation

Pµ(Xn+1 P B) = E
�
E(1B(Xn+1) |Fn)

�

= E
�

p(Xn, B)
�
=

ª
P(Xn P dx)p(x, B)

(30.5)

by plugging µPn for P(Xn P ¨). ⇤
The sequence of measures tµPn

un•0 thus coincides with the sequence of laws asso-
ciated with a run of the Markov chain initiated from µ. In order to motivate the next
definition, assume that we somehow know that the law µPn of Xn under Pµ converges
to a probability measure n. Then also the law µPn+1 of Xn+1 converges to n and so it is
reasonable to expect that nP = n. This naturally leads to:
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Definition 30.2 A non-zero measure n on (S, S) is said to be stationary if nP = n or, in

full notation,

@B P S : n(B) =
ª

n(dx)p(x, B) (30.6)

A stationary measure n that obeys n(S) = 1 is called a stationary distribution.

The word “stationary” refers to the fact that, if the chain is started from a stationary
distribution, then Xn has the same law for all n • 0. Note, however, that for a measure to
be stationary we do not require that n is a probability, or that it is even finite. We denote
the set of stationary measures as

I :=
 

n P M(S) : nP = n, n(S) ° 0
(

(30.7)

and the set of stationary distributions as

I1 :=
 

n P M(S) : nP = n, n(S) = 1
(

(30.8)

where M(S) is the set of all measures on (S, S). In the literature one can also find the
synonym “invariant” for “stationary.”

In the special case of S countable, the condition (30.6) is rephrased as

@x P S : n(x) =
ÿ

yPS
n(y)P(y, x) (30.9)

where n is now the probability mass function. (One can similarly rewrite (30.6) using the
Radon-Nikodym derivative of n with respect to a measure on S.)

30.2 Existence and uniqueness.

Once we accept the concept of stationary measures, a natural question is that of existence
and uniqueness. Neither of these comes for granted in general, which makes the concept
all the more interesting. We start with an observation that builds on a classical result in
linear algebra: the Perron-Frobenius theorem.

Lemma 30.3 Let S be finite and let P be a stochastic matrix indexed by S. Then there exists a
probability measure n on S such that nP = n. In short, I1 ‰ H.

Proof. The fact that P is stochastic implies that the constant vector 1 is a right-eigenvector
with unit eigenvalue; i.e., P1 = 1. This means that det(1 ´ P) = 0 and so P admits a left
eigenvector h with unit eigenvalue; i.e., hP = h with h ‰ 0 or, in “coordinates,”

@x P S : h(x) =
ÿ

yPS
h(y)P(y, x) (30.10)

This would do the job once if we knew h is non-negative. Although this may not be the
case in general, we will instead show that |h| is then such an eigenvector as well. Indeed,
(30.10) along with P(y, x) • 0 give

@x P S :
ˇ̌
h(x)

ˇ̌
§

ÿ

yPS

ˇ̌
h(y)

ˇ̌
P(y, x) (30.11)
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which by summing over x P S and using that P(y, ¨) is a probability mass function shows
ÿ

xPS

ˇ̌
h(x)

ˇ̌
§

ÿ

xPS

ÿ

yPS

ˇ̌
h(y)

ˇ̌
P(y, x) =

ÿ

yPS

ˇ̌
h(y)

ˇ̌ ÿ

xPS
P(y, x) =

ÿ

yPS

ˇ̌
h(y)

ˇ̌
(30.12)

Since the left and right hand sides are equal, equality must thus hold in (30.11) and so
|h|P = |h|. Taking n(x) := |h(x)|/

∞
zPS |h(z)| gives n P I1, as desired. ⇤

We note that uniqueness fails already for finite-state Markov chains. For instance, take
a chain on S with |S| † 8 such that P(x, x) = 1 for all x P S. Then dx P I1 for all x P S
and so there are multiple invariant distributions once S is larger than a singleton. A key
obstruction here is clearly the lack of the following property:

Definition 30.4 Consider a Markov chain in a countable (or finite) set S. Writing P for

the transition kernel, we say that the chain is irreducible if

@x, y P S Dn • 0 : Pn(x, y) ° 0 (30.13)

As is easy to check, if n P I and the Markov chain is irreducible, then n(x) ° 0 for
all x P S. Using this observation we conclude:

Lemma 30.5 Suppose that S is finite and P is a transition kernel such that the associated
Markov chain is irreducible. Then I1 is a singleton.

Proof. Suppose n, ñ P I1. Using that S is finite, the fact that the chain is irreducible
implies e := minxPS n(x)/ñ(x) ° 0. If ñ ‰ n, then n ´ eñ defines a (non-trivial) invariant
measure that vanishes at at least one point of S, contradicting irreducibility. Hence ñ = n
and, thanks to Lemma 30.3, I1 is a singleton. ⇤

We will now generalize the existence part of the claim to compact state spaces. Given
a measurable function f , let P f be the function

P f (x) :=
ª

p(x, dy) f (y) (30.14)

whenever the integral is meaningful. If S is a topological space, write Cb(S) for the
set of bounded continuous functions on S. Note that, in general, P f is just measurable
regardless of how regular f may be. The following concept boosts the regularity of P f
in a way that is useful both for theory building and applications:

Definition 30.6 (Feller property) Let p be a transition probability of a Markov chain on

a topological space S endowed with the s-algebra S := B(S) of its Borel sets. We say

that p is Feller or has the Feller property if

@ f P Cb(S) : P f P Cb(S) (30.15)

With this in hand we get:

Theorem 30.7 (Krylov and Bogoliubov, 1937) Suppose that S is a compact space and let p
be a transition probability on (S,B(S)) with the Feller property. Then I1 ‰ H.
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Proof. Pick x0 P S and, given f P C(S) and n • 1, define

fn( f ) := Ex0

✓
1
n

n´1ÿ

k=0

f (Xk)

◆
=

1
n

n´1ÿ

k=0

Pk f (x0) (30.16)

Note that |fn( f )| § } f } := supxPS | f (x)| (which is finite thanks to the assumed com-
pactness) and so tfnun•1 is an equicontinuous family of (continuous) linear functionals
on C(S). The compactness of S also implies that C(S) is separable meaning that there
exists a countable set D Ñ C(S) whose closure is all of C(S). Cantor’s diagonal argu-
ment allows us to pick nk Ñ 8 such that tfnk( f )uk•1 converges for all f P D. Taking
any f P C(S), for each e ° 0 we can find fe P D such that } f ´ fe} † e. But then the
uniform bound on the norm of fn implies

lim sup
kÑ8

fnk( f ) ´ lim inf
kÑ8

fnk( f )

§ lim sup
kÑ8

fnk( fe) + } f ´ fe} ´ lim inf
kÑ8

fnk( fe) ´ } f ´ fe}

= 2} f ´ fe} † 2e

(30.17)

As e is arbitrary, this proves that

f( f ) := lim
kÑ8

fnk( f ) (30.18)

exists for all f P C(S).
The definition of fn gives

fn(P f ) = fn( f ) +
1
n
⇥
Pn f (x0) ´ f (x0)

⇤
(30.19)

The term on the right is bounded by 2
n } f } and so it converges to zero. Since the Feller

property gives P f P C(S), we thus get

@ f P C(S) : f(P f ) = f( f ) (30.20)

As |f( f )| § } f } and f(1) = 1, the Riesz Representation Theorem implies existence of a
probability measure n on (S,B(S)) such that

@ f P C(S) : f( f ) =
ª

f dn (30.21)

Using the Fubini-Tonelli theorem, the identity (30.20) then translates into

@ f P C(S) :
ª

f d(nP) =
ª

f dn (30.22)

Standard approximation arguments now give equality n = nP on open sets and, by
Dynkin’s p/l-theorem, on all Borel sets. Hence, n P I1. ⇤

The above proof gives some clear indications what may go wrong with the argument
in non-compact case. First, “mass” can spread to “infinity” resulting in vanishing limit
in (30.18). Perhaps more importantly, the technique will at best produce a stationary
measure of finite mass and, as we shall see, there are Markov chains that admit no such
measures yet they do have measures of infinite mass.
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30.3 Examples and counterexamples.

We now move to treat some specific examples of stationary measures as well as coun-
terexamples to their existence and uniqueness. We start with the Ehrenfest urn model:

Lemma 30.8 Consider the Ehrenfest chain with state space S := t0, 1, . . . , nu and let the
transition matrix be as in (29.18). Then

n(k) :=
✓

n
k

◆
2´n, k = 0, . . . , n, (30.23)

defines a stationary distribution.

Proof. We have to show that n satisfies (30.9). First we note that
ÿ

kPS

n(k)P(k, l) = n(l ´ 1)P(l ´ 1, l) + n(l + 1)P(l + 1, l). (30.24)

Then we calculate

rhs of (30.24) = 2´n
h✓ n

l ´ 1

◆
n ´ l + 1

n
+

✓
n

l + 1

◆
l + 1

n

i

= 2´n
✓

n
l

◆h l
n ´ l + 1

n ´ l + 1
n

+
n ´ l
l + 1

l + 1
n

i
.

(30.25)

The proof is finished by noting that, after a cancellation, the bracket equals one. ⇤
Concerning the birth-death chain, we state the following:

Lemma 30.9 Consider the birth-death chain on N characterized by sequences takuk•0, tbkuk•0
and tgkuk•0 as in (29.19). Suppose that bn ° 0 for all n • 1. Then n(0) := 1 and

n(n) :=
nπ

k=1

ak´1
bk

, n • 1, (30.26)

defines a stationary measure of the chain.

Proof. The condition (30.9) boils down to showing that

n(k ´ 1)ak´1 + n(k)gk + n(k + 1)bk+1 = n(k) (30.27)

for each k • 0 (with n(´1) := 0). Now check that n(k ´ 1)ak´1 = n(k)bk and that
n(k + 1)bk+1 = akn(k) and apply (29.20) to get the claim. ⇤

The reader might wonder how does one come up with the expression (30.26) in the
first place. This will be explained elegantly using the concept of reversibility later.

Next we observe:

Lemma 30.10 Consider the card shuffling Markov chain defined in (29.25). Then n(s) := 1
n!

is an stationary distribution.
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Proof. This is checked directly from
ÿ

sPSn

n(s)P(s, s̃) =
1
n!

ÿ

sPSn

q(s̃ ˝ s´1) =
1
n!

ÿ

s1PSn

q(s1) =
1
n!

= n(s̃) (30.28)

where we changed variables to s1 := s̃ ˝ s´1 and observed that the sum then still goes
over all elements in Sn. ⇤

For the card shuffles that have a chance to mix the deck, i.e., those that are irreducible,
the uniform distribution is the unique invariant distribution by Lemma 30.5. This is ac-
tually true for general random walks on groups, where the left-invariant (and thus “uni-
form”) measure is always stationary whenever it exists. However, as the next lemma
shows, other stationary measures may exist as well:

Lemma 30.11 (Biased simple random walk) Let S := Z and, given p P (0, 1), define P by

P(k, k + 1) = p and P(k, k ´ 1) = 1 ´ p (30.29)

For each a, b • 0 set

na,b(k) := a + b

✓
1 ´ p

p

◆k

(30.30)

Then
I =

 
na,b : a, b • 0

(
(30.31)

In particular, I has at least two distinct extreme points whenever p ‰ 1/2.

Proof. The condition (30.9) reduces to

n(k + 1)p + n(k ´ 1)(1 ´ p) = n(k) = n(k)p + n(k)(1 ´ p) (30.32)

which rewrites as
n(k + 1) ´ n(k) =

1 ´ p
p
⇥
n(k) ´ n(k ´ 1)

⇤
(30.33)

This is clearly solved by constant n but also by n whose increments are such that

n(k + 1) ´ n(k) = a
✓

1 ´ p
p

◆k

(30.34)

for a a positive constant. This now readily yields (30.30). ⇤
The example in Lemma 30.11 shows that non-uniqueness of the stationary measure

(which is determined only up an overall multiple) may arise naturally in Markov chains
on infinite state spaces, in spite of irreducibility being in force. We may also be in the
situation when a small change to the transition probabilities of the chain changes the
existence of stationary measures:

Lemma 30.12 Consider the Renewal chain with transition kernel defined using the sequence
takuk•0 as in (29.21–29.22). Then

I ‰ H ô

π

k•0

(1 ´ ak) = 0 (30.35)
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Proof. The condition (30.9) translates into

@k • 1 : n(k ´ 1)(1 ´ ak´1) = n(k) (30.36)

and ÿ

k•0

akn(k) = n(0) (30.37)

The first condition is resolved as

@k • 1 : n(k) = n(0)
k´1π

j=0

(1 ´ aj) (30.38)

which by plugging into the second condition gives

n(0) = n(0)

 
a0 +

ÿ

k•1

ak

k´1π

j=0

(1 ´ aj)

!
= n(0)

 
1 ´

π

j•0

(1 ´ aj)

!
(30.39)

where the second equality follows by truncating the sum, proving the formula for this
case and removing the trunction by a limit. The upshot of (30.39) is that n(0) must vanish
unless the infinite product vanishes, in which case we can set n(0) to any non-negative
value and satisfy both (30.36) and (30.37). ⇤

The upshot of the above examples is that, for infinite-state Markov chains, the ex-
istence and uniqueness of stationary measures are quite problem dependent. We will
return to the example of the Renewal chain when we discuss the connection between
existence of stationary measures and recurrence of the chain.
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