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28. SUBADDITIVE ERGODIC THEOREM

Our last item of our business in this section is a very useful version of the Pointwise
Ergodic Theorem which appears in a number of probability contexts. The key difference
is that instead of sums of “translates” of a function by a m.p.t., we are dealing with
subadditive families of random variables.

28.1 Statement and examples.

Throughout probability and statistical mechanics, subadditivity serves a useful “soft”
tool for proving limits which would otherwise seem impossible. The observation that
this is the case goes back to a lemma usually attributed to M. Fekete, although one would
have hard time finding this statement in the corresponding paper:

Lemma 28.1 (Subadditive convergence; Fekete 1923) Let tanun•1 be an R-valued sequence
which is subadditive in the sense

@m, n • 1 : an+m § an + am (28.1)

Then
lim

nÑ8
an

n
= inf

n•1

an

n
P R Y t´8u (28.2)

Proof. Denote the infimum as c and suppose first that c ° ´8. Given e ° 0, there
exists m P N such that am/m § c + e. Any n P N can then be written as n = km + r
for k • 0 and r P t0, 1, . . . , m ´ 1u. Subbaditivity then implies

akm+r § kam + ar (28.3)

which yields
akm+r

mk + r
§

km
km + r

am

m
+

1
km + r

max
0§j†m

aj (28.4)

Invoking the defining property of m and returning to the notation using n we get

c §
an

n
§ c + e +

1
n

⇣
max

0§j†m
aj + m|c + e|

⌘
(28.5)

for all n • 1. Taking n Ñ 8 followed by e Ó 0 we get (28.2).
For c = ´8 we instead pick M ° 0 and find m so that am/m § ´M. Then we repeat

the same argument to show that

lim sup
nÑ8

an

n
§ ´M (28.6)

Taking M Ñ 8 then yields the claim. ⇤
In 1968, J. Kingman considered a random generalization of a subadditive sequence in

the form of an array tXm,nu0§m†n satisfying

@` † m † n : X`,n § X`,m + Xm,n (28.7)

Here we think of Xm,n as a quantity assigned to the interval [m, n). Under additional sta-
tionarity assumptions,J. Kingman then proved existence of the a.s.-limit limnÑ8 n´1X0,n.
Later H. Kesten introduced a generalization, which he referred to as superconvolutive
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sequence, which relaxed some of Kingman’s conditions. In mid 1980s T. Liggett found
another extension (which was immediately applied by R. Durrett in his study of the
contact process) that turns out to be more applicable than its predecessors.

Theorem 28.2 (Liggett’s Subadditive Ergodic Theorem, 1985) Consider a triangular array
tXm,nu0§m§n of random variables such that

(1) @0 † m † n : X0,n § X0,m + Xm,n a.s.
(2) tXnk,n(k+1)un•1 is stationary for all k • 1.
(3) The law of tXm,m+nun•1 does not depend on m.
(4) EX+

0,1 † 8 and there exists g0 ° ´8 such that @n • 1 : EX0,n • g0n.
Then the following holds:

(a) The limit g := limnÑ8
EX0,n

n exists, is finite and equals infn•1
EX0,n

n .
(b) X := limnÑ8

X0,n
n exists a.s. and in L1 with EX = g.

(c) If the sequence in (2) above is ergodic for all k • 1, then X = g a.s.

Before we delve into the proof, let us check some examples of sequences satisfying
properties (1-4) of this theorem:

Example 28.3 (Additive functionals) Given a stationary sequence tZnun•0 with Z0 P L1,
let Xm,n =

∞n´1
j=m Zj. Then properties (1-4) hold for tXm,nu0†m†n. The conclusion of

Theorem 28.2 is then the Pointwise Ergodic Theorem. (Nothing new is learned though
since the proof of Theorem 28.2 uses the Pointwise Ergodic Theorem.)

Example 28.4 (Range of a random walk) Let tSnun•0 denote a random walk on Rd (i.e.,
Sn = Z1 + ¨ ¨ ¨ + Zn for tZiui•1 i.i.d. Rd-valued random variables) and write

Xm,n :=
ˇ̌
tSm, . . . , Sn´1u

ˇ̌
(28.8)

for the number of sites visited by the walk in time interval [m, n). This set X0,n is some-
times called the range of the walk. Note that for ` † m † n the union bound gives

ˇ̌
tS`, . . . , Sn´1u

ˇ̌
§

ˇ̌
tS`, . . . , Sm´1u

ˇ̌
+

ˇ̌
tSm, . . . , Sn´1u

ˇ̌
(28.9)

the array tXm,nu0†m†n satisfies condition (1) of Theorem 28.2. The other conditions are
checked using the i.i.d. nature of tZiui•1 — in fact, it suffices that tZiui•1 is stationary.

Example 28.5 (Longest common subsequence) Consider stationary processes tYnun•0
and tZnun•0 and let Xm,n denote the longest common subsequence for indices in inter-
val [m, n) defined as

Xm,n = max
"

k • 0 : Dm † i1 † ¨ ¨ ¨ † ik § n, Dm § j1 † ¨ ¨ ¨ † jk † n
such that Xi` = Yj` for all ` = 1, . . . , k

*
(28.10)

Then X0,n • X0,m + Xm,n and so t´Xm,nu0†m†n satisfies condition (1) above. The other
conditions are verified using stationarity of tYnun•0 and tZnun•0.

Example 28.6 (Distance in First-Passage Percolation) Consider the graph with vertex
set Zd and an undirected edge between every pair x, y P Zd with }x ´ y}1 = 1. Writ-
ing E(Zd) for the set of edges, suppose tW(e) : e P E(Zd)u are i.i.d. positive random
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variables with W(e) interpreted as the length of (or, alternatively, time it takes to cross)
edge e. For each distinct x, y P Zd define

D(x, y) := inf

$
&

%

nÿ

j=1

W(xj´1, xj) :
 
(xi´1, xi) : i = 1, . . . , nu Ñ E(Zd)

x0 = x, xn = y, n • 1

,
.

- (28.11)

to be the minimal length of any path from x to y, where the length of the path is simply
the sum of the the W’s for all edges in the path. In the alternative description using time
to cross the edge, D(x, y) is the first time once can get from x to y (or y to x). This version
of the problem (introduced originally by J. Hammersley and D. Welsh in 1965) earned it
the name First-Passage Percolation.

For this setup, given any x P Zd and naturals 0 § m † n, let

Xm,n := D
�
mx, (n ´ 1)x

�
(28.12)

The triangle inequality obeyed by D then implies condition (1) in Theorem 28.2 and
conditions (2-3) then hold by the stationarity of the weights W. For condition (4) we
need to assume W P L1.

28.2 Proof of Subadditive Ergodic Theorem.

We will now move to the proof of Theorem 28.2. Our first item of business is the conver-
gence under expectation:
Proof of Theorem 28.2(a). First let us check integrability of all random variables. Con-
dition (1) directly translates into X+

m,n § X+
0,m + X+

m,n. By iteration, X+
0,n §

∞n´1
k=0 X+

k,k+1.
By (4), this implies EX+

0,n § nEX+
0,1 † 8. Noting that |X0,n| = 2X+

0,n ´ X0,n we get

E|X0,n| § n(2EX+
0,1 ´ g0) (28.13)

where we again invoked (4). Conditions (1) and (3) in turn tell us

EX0,m+n § EX0,m + EXm,m+n = EX0,m + EX0,n (28.14)

The sequence n fiÑ EX0,n is subadditive and bounded by a linear function. Hence, by the
Lemma 28.1, the limit in (a) exists finitely and equals the infimum. ⇤

To study the a.s. limit, we introduce the random variables:

X(m)
= lim sup

nÑ8

Xm,m+n

n
and X(m) = lim inf

nÑ8
Xm,m+n

n
(28.15)

Our first goal is to show that these do not depend on m:

Lemma 28.7 Under the conditions (1-4),

@m • 1 : X(m)
= X(0) a.s. ^ X(m) = X(0) a.s. (28.16)

Proof. Condition (1) implies

X0,n

n
§

X0,m

n
+

n ´ m
n

Xm,m+(n´m)

n ´ m
(28.17)

Preliminary version (subject to change anytime!) Typeset: May 15, 2025



193 MATH 275B notes

Taking n Ñ 8 yields X(0)
§ X(m) and X(0)

§ X(m). But condition (3) gives X(0) law
= X(m)

and so we must have X(0)
= X(m) a.s. The infima are handled similarly. ⇤

As a consequence, there is no need to distinguish between X(m) and X(m) for dif-
ferent m; from now on we will write simply X, resp., X to denote any these random
variables. In the course of the proof, we will need the following simple observations:

Lemma 28.8 Let tZnun•1 be stationary random variables with Z1 P L1. Then

Zn

n
›Ñ
nÑ8 0 a.s. (28.18)

Proof. Using stationarity to get
ÿ

n•1

P(|Zn| ° en) =
ÿ

n•1

P(|Z0| ° en) § e´1E|Z0| (28.19)

this follows from the Borel-Cantelli lemma. ⇤
The proof of Theorem 28.2 now proceeds by establishing bounds on EX and EX:

Lemma 28.9 Under the conditions (1-4), (X)+ P L1 and EX § g. Moreover, if the sequence
in (2) is ergodic for all k • 1, then X § g a.s.

Proof. Fix m • 1 and write each n • 1 as n = mk + r with 0 § r † m. Using condition (1)
we then get

X0,n

n
§

k
km + r


1
k

k´1ÿ

`=0

X`m,(`+1)m

�
+

Xkm,n
km + r

(28.20)

By condition (2) and Birkhoff’s Pointwise Ergodic Theorem, the bracket on the right-
hand side tends to a random variable Ym P L1 with the property EYm = EX0,m. For n • m
the last term is bounded by 1

n
∞m

j=1 |Xn´j,n| which tends to zero a.s. by Lemma 28.8,
condition (2) and (28.13). Hence we get X §

Ym
m and thus (X)+ P L1. Taking expectations

we get EX §
1
m EX0,m which tends to g as m Ñ 8 by conclusion (a) of Theorem 28.2.

To get the second part of the claim, note that under ergodicity assumption in (2), we
have Ym = EX0,m a.s. and the bound X § g then holds pointwise a.s. ⇤

Lemma 28.10 Under the conditions (1-4), (X)´
P L1 and EX • g.

Proof. We use an argument similar to that invoked in the proof of the Stephanov-Hopf
Ratio Ergodic Theorem (Theorem 26.7). Pick M ° 0 and consider the random variables

Ym,n := Xm,n ´ (n ´ m)[X _ (´M)] (28.21)

Note that, as the second term is additive, Ym,n obeys (1) if Xm,n does. Since (Xm,n)+ P L1,
we have Ym,n P L1. Next, noting that lim infnÑ8 Ym,m+n/n = X ´ [X _ (´M)] § 0, for
each e ° 0 we have

Tn := inftn • 1 : Ym,m+n § enu † 8 a.s. (28.22)
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In light of Y0,1 P L1, there is N0 • 1 such that E(Y0,11tT0°Nu) † e holds for all N • N0.
Define the random variables

Sm :=

#
Tm, if Tm § N
1, otherwise

(28.23)

and
tm := tm´1 + Stm´1 (28.24)

Note that tm+1 ´ tm P t1, . . . , Nu. Now we use these random “times” in conjunction
with (1) to write

Y0,n § Y0,t1 + Yt1,t2 + ¨ ¨ ¨ + YtK´1,tK + YtK ,n (28.25)
where K = maxtk : tk § nu. The various truncations invoked above now imply

Yt`,t`+1 § e(t`+1 ´ t`)1tTt`
§Nu + Yt`,t`+11tTt`

°Nu (28.26)

Summing the first terms over ` = 0, . . . , K ´ 1 yields a quantity less than en, while the
fact that t`+1 = t` + 1 on tTt` ° Nu bounds the sum of the second terms by that of
|Y`,`+1|1tT`°Nu. Hence we get

Y0,n § en +
n´1ÿ

`=1

Y`,`+11tT`°Nu +
Nÿ

j=0

|Yn´j,n| (28.27)

where we also observed that n ´ tK § N. Taking expectations while invoking condi-
tion (2) yields

EY0,n

n
§ e + E

�
|Y0,1|1tT0°Nu

�
+

1
n

nÿ

j=0

E|Y0,j| (28.28)

Taking n Ñ 8, N Ñ 8 and e Ó 0, the right-hand side tends to zero. The left-hand side
in turn converges to g ´ E[X ^ (´M)]. Hence E(X ^ (´M)] • g. Taking M Ñ 8 with
the help of the Monotone Convergence Theorem we get thex claim. ⇤

Now we can finish the remaining claims:
Proof of Theorem 28.2(b) and (c). Let us start with almost sure convergence: Since X § X
and, by Lemmas 28.9 and 28.10,

EX • g • EX (28.29)
we must have X = X a.s. Under the ergodicity assumption in (2), we also get X § g a.s.
which in light of EX = g forces X = X = g a.s.

Let X denote the a.s. limit. To prove convergence in L1, we need to prove uniform
integrability. For this we invoke subadditivity to get

(X0,n ´ nX)+ §

n´1ÿ

`=0

(X`,`+1 ´ X)+
a.s.
=

n´1ÿ

`=0

(X`,`+1 ´ X(`))+ (28.30)

where we also invoked Lemma 28.7. The variables under the sum on the right-hand side
form a stationary sequence with E(X`,`+1 ´ X(`))+ † 8 and so, by Birkhoff’s Pointwise
Ergodic Theorem the sum normalized by n converges a.s. and in L1. It follows that
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t( 1
n X0,n ´ X)+ : n • 1u is UI and that E( 1

n X0,n ´ X)+ Ñ 0. The fact that 1
n EX0,n Ñ g =

EX then proves 1
n X0,n Ñ X in L1 by way of the identity |Z| = 2Z+

´ Z. ⇤

28.3 Applications.

Theorem 28.2 applies to Examples 28.3–28.6 and yields existence of an a.s. limit of the
quantity 1

n X0,n defined there. Let us comment further on two of the cases; namely, the
range of the random walk in Example 28.3 and the First-Passage Percolation distance in
Example 28.6. For the former we in fact get:

Lemma 28.11 Let tSnun•1 be a random walk on Rd and set Rn := |tS1, . . . , Snu|. Then

Rn

n
›Ñ
nÑ8 P

�
@k • 1 : Sk ‰ 0

�
a.s. (28.31)

Proof. Theorem 28.2 yields Rn/n Ñ X a.s. and in L1 with X constant a.s. by the Hewitt-
Savage Zero-One Law. It thus suffices to compute the limit of expectations. Denote

T0 := inftk • 1 : Sk = 0u (28.32)

Then
P
�
Sk+1 R tS1, . . . , Sku

�
= P(Xk ‰ 0, Xk + Xk´1 ‰ 0, . . . , Xk + ¨ ¨ ¨ + X1 ‰ 0)
= P(S1, . . . , Sk ‰ 0) = P(T0 ° k)

(28.33)

implies

ERn =
n´1ÿ

k=0

P
�
Sk+1 R tS1, . . . , Sku

�
=

n´1ÿ

k=0

P(T0 ° k) (28.34)

Since P(T0 ° k) Ñ P(T0 = 8) as k Ñ 8, the sum on the right normalized by n tends to
P(T0 = 8) = P(@k • 1 : Sk ‰ 0) as well. ⇤

We remark that a proof of (28.31) is possible that avoids any reference to the Subaddi-
tive Ergodic Theorem. We leave this to a homework exercise.

For Example 28.6 we in turn get:

Lemma 28.12 (Existence of FPP norm) Suppose that the weights tW(e) : e P E(Zd)u in
Example 28.6 are stationary with respect to the shifts of Zd. Assume that EW(e) † 8 for all
e P E(Zd). Then

@x P Zd : r(x) := lim
nÑ8

1
n

D(0, nx) exists a.s. and in L1 (28.35)

Moreover if tW(e) : e P E(Zd)u are ergodic in the sense that any A P s(W(e) : e P E(Zd)) that
is invariant under all shifts of Zd has P(A) P t0, 1u, then r(x) is constant a.s. for all x P Zd.

Proof. A simple estimate using the path from 0 to x minimizing the number of edges
used (and thus `1-distance) shows

0 § ED(0, nx) § }x}1 max
ePZd

EW(e) (28.36)
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where the maximum is finite by our assumption that W(e) P L1 and stationarity. Theo-
rem 28.2 then applies and yields (28.35). The main point is thus to prove a.s.-constancy
of the limit under the assumption of joint ergodicity with respect to the shifts of Zd. This
does not follow from clause (c) of Theorem 28.2 because joint ergodicity is weaker than
ergodicity under the shifts by x only.

We have to show that that r(x) is invariant under the shifts of the underlying “envi-
ronment.” Assume that the weights are realized as coordinate projections on the product
space R

E(Zd)
+ ; i.e., Ww(x, y) := w(x, y) for w P R

E(Zd)
+ and (x, y) P E(Zd). Let tz be the

map acting as
Wtzw(x, y) = Ww(x + z, y + z) (28.37)

and let Dw(x, y) be the quantity from (28.11) and write rw(x) for the limit from (28.35).
For each z P Zd and x P Zd, the triangle inequality gives

Wtzw(0, nx) = Ww(z, z + nx) § Ww(z, 0) + Ww(0, nx) + Wtnxw(0, z) (28.38)

Dividing by n, the first term on the right tends to zero as n Ñ 8 while the second term
tends to rw(x) a.s. For the third term we use Lemma 28.8 along with stationarity and
finite mean to show convergence to zero a.s. It thus follows that rtzw(x) § rw(x) a.s.
By symmetry, rtzw(x) = rw(x) a.s. implying that r(x) is almost invariant under all the
shifts of Zd. The assumed ergodicity then gives that r(x) = Er(x) a.s. ⇤

We remark that the existence of the limit along with D(0, x) law
= D(´x, 0) implies that

x fiÑ r(x) is positive homogeneous and symmetric under reflections through 0. Along
with the triangle condition we then readily infer that r is (a restriction to Zd of) a norm
on Rd. Using this norm we then show:

Theorem 28.13 (Shape theorem for First-Passage Percolation, J. Cox and R. Durrett, 1981)
Suppose tW(e) : e P E(Zd)u are ergodic with W(e) P L1 and let Br := tx P Rd : r(x) § ru be
the ball of radius r in the associated (deterministic) norm r. Then

@e P (0, 1) : P
✓

B(1´e)r X Zd
Ñ
 

x P Zd : D(0, x) § r
(

Ñ B(1+e)r

◆
›Ñ
rÑ8 1 (28.39)

The proof of this is quite easy when the weights W are bounded; indeed, one then
only needs to control the growth of n fiÑ D(0, nx) for a finite number of x and use the
`1-distance to interpolate to get

max
xPZd

0†}x}8§n

|D(0, x) ´ r(x)|
n

›Ñ
rÑ8 0 (28.40)

The unbounded case is handled by truncating the distance to be less than M and show-
ing that the limiting norm for the truncated weights tends to r as M Ñ 8.
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