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27. WEAK AND STRONG MIXING

In this section we will expand on the notions of ergodicity and recurrence and show
that these are part of a hierarchy of mixing properties of measure preserving systems.
Throughout we assume that the underlying measure is a probability.

27.1 Definitions and examples.

In order to introduce the desired notions in proper context, we start by recalling that a
m.p.s. (X ,G, µ, j) with µ(X ) = 1 is

(0) recurrent if

@B P G : µ(B) ° 0 ñ Dn • 1 : µ(j´n(B) X B) ° 0 (27.1)

(1) ergodic if

@A, B P G :
1
n

n´1ÿ

k=0

µ
�

j´k(A) X B
�

›Ñ
nÑ8 µ(A)µ(B) (27.2)

Recurrence follows automatically for finite measure spaces from the Poincaré Recur-
rence Theorem. For (27.2) we note that the Pointwise/Mean Ergodic Theorem gives

1
n

n´1ÿ

k=0

µ
�

j´k(A) X B
�
= E

✓
1B

1
n

n´1ÿ

k=0

1A ˝ jk
◆

›Ñ
nÑ8 E(1B1̄A) (27.3)

and ergodicity then forces 1̄A =
≥

1Adµ = µ(A) implying (27.2). Conversely, if A is an
invariant event then (27.2) with B := A forces µ(A) = µ(A)2; i.e., µ(A) P t0, 1u.

We now introduce names for stronger versions of the convergence in (27.2):

Definition 27.1 (Weak and strong mixing) A m.p.s. (X ,G, µ, j) with µ(X ) = 1 is

(2) weakly mixing if

@A, B P G :
1
n

n´1ÿ

k=0

ˇ̌
ˇ µ

�
j´k(A) X B

�
´ µ(A)µ(B)

ˇ̌
ˇ ›Ñ

nÑ8 0 (27.4)

(3) strongly mixing (or sometimes simply mixing) if

@A, B P G : µ
�

j´k(A) X B
�

›Ñ
nÑ8 µ(A)µ(B) (27.5)

For practical use it is useful to note that we only need to check the above properties
for a suitable generating class of sets:

Lemma 27.2 Let S is a semi-algebra such that G Ñ s(S). If any of (27.2), (27.4) and (27.5)
holds for all A, B P S then it holds for all A, B P G.

Proof. Let S be a semialgebra and let A be the set of all finite disjoint unions of elements
from S . Then A is an algebra. This shows that if (27.2), (27.4) and (27.5) hold for all
A, B P S , then in holds for all A, B P A. Next, by the construction of µ on s(A) via the
outer measure, for each A, B P s(A) and each e ° 0 there exists A1, B1

P A such that
µ(A4A1) † e and µ(B4B1) † e. Then |µ(j´k(A) X B) ´ µ(j´k(A1) X B1)| † 2e and
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|µ(A)µ(B) ´ µ(A1)µ(B1)| † 2e. Using this we extend the corresponding limit claim to
all A, B P s(A), which contains G. ⇤

Yet another simple fact is the invariance under isomorphisms:

Lemma 27.3 The properties (1), (2) and (3) are isomorphism invariants: If (X ,G, µ, j) and
(X 1,G 1, µ1, j1) are m.p.s. F : X Ñ X 1 is a bi-measurable bijection such that µ1 = µ ˝ F´1

and F ˝ j = j1
˝ F, then if any of (1-3) above hold for one m.p.s. then it holds for the other

m.p.s. as well.

Proof. This is immediate from the assumptions. ⇤
We proceed by examples of strongly mixing m.p.s.:

Lemma 27.4 Left-shifts of i.i.d. sequences are strongly mixing.

Proof. Let tXkuk•0 be i.i.d. random variables defined on a suitable product space and
let j be the left shift. Since

î
k•1 s(X0, X1, . . . , Xk) is an algebra, it suffices to prove (27.5)

for A, B P s(X0, X1, . . . , Xk). But this follows by noting that j´n(A) P s(Xn, Xn+1, . . . )
and so j´n(A) and B are independent once n ° k. ⇤

Corollary 27.5 The “continued fractions” m.p.s. (Example 20.10) and “Baker’s transform”
m.p.s. (Example 20.12) are strongly mixing.

Proof. Since both of these systems are isomorphic to i.i.d. sequences with the left shift,
this follows from Lemmas 27.3 and 27.4. ⇤

Another example of a strongly mixing system is an irreducible, aperiodic countable-
state Markov chain which we will discuss in the upcoming lectures. In both cases we
can infer strong mixing by showing a yet stronger property. We start with a definition:

Definition 27.6 (Tail triviality) A m.p.s. (X ,G, µ, j) with µ(X ) = 1 is said to be

(4) tail trivial if µ is trivial on the tail s-field

T :=
£

n•1

 
j´n(A) : A P G

(
(27.6)

in the sense

@B P T : µ(B) P t0, 1u (27.7)

We say that j is exact if T = tH, X u. (This implies tail triviality.)

Lemma 27.7 Let (X ,G, µ, j) be a m.p.s. with µ(X ) = 1. Then j is tail-trivial if and only if

@B P G : sup
APG

ˇ̌
ˇ µ

�
j´n(A) X B

�
´ µ(A)µ(B)

ˇ̌
ˇ ›Ñ

nÑ8 0 (27.8)
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Proof. Suppose (X ,G, µ, j) is tail trivial. Denote Tn := tj´n(A) : A P Gu and note
that Tn Ó T . Then

ˇ̌
ˇ µ

�
q´n(A) X B

�
´ µ(A)µ(B)

ˇ̌
ˇ =

ˇ̌
ˇ E

⇣
1j´n(A)

�
1B ´ µ(B)

�⌘ˇ̌
ˇ

=
ˇ̌
ˇ E

⇣
1j´n(A)

�
E(1B|Tn) ´ µ(B)

�⌘ˇ̌
ˇ § E

ˇ̌
E(1B|Tn) ´ µ(B)

ˇ̌
. (27.9)

The Backward Lévy Theorem implies E(1B|Tn) Ñ E(1B|T ) (both a.s. and in L1) and
by tail-triviality E(1B|T ) = µ(B) a.s. Hence, the right-hand side converges to zero uni-
formly in A, proving (27.8).

To prove the converse, pick B P T . Then for each n • 1 there exists An P G such that
B = j´n(An). Using uniformity in A of the limit (27.8), this along with µ(An) = µ(B)
implies

µ(B) ´ µ(B)2 = µ
�

j´n(An) X B
�

´ µ(An)µ(B) ›Ñ
nÑ8 0 (27.10)

i.e., µ(B)2 = µ(B). Hence µ is trivial on T . ⇤

27.2 Separating the mixing concepts.

It is easy to check that (4) ñ (3) ñ (2) ñ (1) ñ (0). Our next goal is to demonstrate
that each concept is different from the others. The following example shows that tail
triviality is stronger than strong mixing:

Lemma 27.8 Let tXnunPZ be Bernoulli(1/2) and let Zn :=
∞

m•0 2´m+1Xn´m. Then the left
shift of tZnunPZ is strongly mixing but not tail trivial, due to

T :=
£

n•0
s(Zn, Zn+1, . . . ) = s(Xn : n P Z) = s(Zn : n P Z) (27.11)

Proof. Since tXkuk§n is determined by the binary expansions of Zn, for each n P Z we
have s(Zn) Ö s(Xk : k § n) and so

@n • 0 : s(Zn, Zn+1, . . . ) Ö s(Xn : n P Z) = s(Zn : n P Z) (27.12)

Hence also T = s(Zn : n P Z).
To see that the m.p.s. is strongly mixing, note that tZk • `2´n

u, where `, n P N is
independent of tXj : j § ´nu and thus of tZj : j § ´nu. As Zn only depends on tXk : k §

nu, for any choices of m P N, `´m, . . . , `m P N and `1́
m, . . . , `1

m P N, the events

A :=
m£

i=´m
tZi • `i2´n

u and B :=
m£

i=´m
tZi • `1

i2
´n

u (27.13)

obey
@k ° n + 2m : µ

�
j´k(A) X B

�
= µ(A)µ(B) (27.14)

implying (27.5). Since the above events form a semialgebra that generates G, Lemma 27.2
shows that the left shift of tZnunPZ is strongly mixing. ⇤

Next we give an example of an ergodic, but non-mixing transformation:
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Lemma 27.9 Irrational rotations of the unit circle are ergodic but not strongly mixing.

Proof. Ergodicity follows from the observation that all invariant functions are constant,
as established in the proof of Weyl’s Equidistribution Theorem (Theorem 21.5). To inval-
idate strong mixing, let A = B := [0, 1/4]. As ergodicity forces tx + an mod 1: n P Nu to
be dense in [0, 1] for at least one x P [0, 1), there exists nk Ñ 8 such that nka mod 1 Ñ 1/2.
But then j´nk(A) is an interval eventually contained in [1/3, 2/3] and so j´nk(A)X B = H

for k sufficiently large. As µ(A) = µ(B) = 1/4, the transformation is not strongly mixing.
(An enhanced version of this argument shows that weak mixing fails as well.) ⇤

It is not at all easy to demonstrate an example of a weakly mixing transformation
that is not strongly mixing. An early example was that of Chacon in 1968. That being
said, weakly mixing transformations are in a sense typical so we will at least give their
characterization by a number of properties. We begin a lemma that demonstrates better
the difference between convergence in Cezaro sense and ordinary convergence:

Lemma 27.10 (Koopman and von Neumann, 1932) Let f : N Ñ R be non-negative and
bounded. Then

lim
nÑ8

1
n

nÿ

k=1

f (k) = 0 (27.15)

is equivlaent to

DE Ñ N : lim sup
nÑ8

|E X t1, . . . , nu|

n
= 0 ^ lim

nÑ8
nRE

f (n) = 0 (27.16)

Proof. To prove (27.16) ñ (27.15) we note that, if E is a set as in (27.16), then for any e ° 0
there exists n0 • 1 such that @n • n0 : n P E ñ f (n) † e. With M such that f § M we
then have

1
n

nÿ

k=1

f (k) § M
|E X t1, . . . , nu|

n
+ M

n0

n
+ e (27.17)

As n Ñ 8, the right-hand side converges to e. Since e was arbitrary, we thus get (27.15).
For (27.15) ñ (27.16) we have to work harder. For m • 1 set Em := tn : f (n) ° 1/mu

and note that m fiÑ Em is non-decreasing. Using that 1Em(k) § m f (k) (in conjunction
with f Ñ 0 in Cezaro sense) implies that Em has zero density. This allows us to recur-
sively define a sequence i1 † i2 † . . . such that

@n • im´1 :
1
n

n´1ÿ

k=0

1Em(k) †
1
m

(27.18)

Now define

E :=
§

m•1

�
E X (im´1, . . . , im]

�
(27.19)
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and let us check that E has the desired properties. First we claim that E has zero density.
Indeed, if im † n † im+1 then E X t1, . . . , nu Ñ Em+1 and so

1
n

n´1ÿ

k=0

1E(k) §
1
n

n´1ÿ

k=0

1Em+1(k) †
1

m + 1
(27.20)

As im Ñ 8 as m Ñ 8, the left-hand side tends to zero as n Ñ 8.
Next let us check that f Ñ 0 in N r E. Again consider im † n † im+1 and note that

n R E implies n R Em+1 giving us f (n) §
1

m+1 . Hence supt f (k) : k • im, k R Eu §
1

m+1 .
As this holds for all m • 1, we get f Ñ 0 in N r E. ⇤

We will refer to the above limit using the following concept:

Definition 27.11 (Limit in density) Let tanun•0 be an R-valued sequence. We say that

the sequence has a limit in density if

Da P R : lim
nÑ8

1
n

n´1ÿ

k=0

|an ´ a| = 0 (27.21)

We will write this as D-lim nÑ8 f (n) = a. (The limit is necessarily unique.)

Next we will show that weak mixing is preserved under taking products. Here we
adopt the convention that if j and y are two m.p.t.’s, then j ˆ y denotes the unique
transformation induced thereby on the Cartesian product of the corresponding measure
spaces. With this understanding we give:

Theorem 27.12 (Characterizations of weak mixing) Let j be a m.p.t. on (X ,G, µ) with
µ(X ) = 1. Then the following are equivalent:

(1) j is weakly mixing
(2) For all A, B P F ,

D-lim
nÑ8 µ(j´n(A) X B) = µ(A)µ(B) (27.22)

(3) j ˆ j is weakly mixing
(4) j ˆ y is ergodic for any ergodic y
(5) j ˆ j is ergodic

Proof. For (1) ô (2), we invoke Lemma 27.10.
For (2) ñ (3) we use that D-lim nÑ8 f (n) = a and D-lim nÑ8 g(n) = b implies that

D-lim nÑ8 f (n)g(n) = ab by the product law for ordinary limits and the fact that the
union of two zero density sets is a zero density set. Then the implication follows from
Lemma 27.10. (One can do the argument directly for Cezaro averages.)

For (3) ñ (4), let j be a m.p.t. on (X1,G1, µ1) and y an m.p.t. on (X2,G2, µ2). We will
first prove that (3) ñ (2). Indeed, assuming j ˆ j is weakly mixing, for each A, B P G1
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we have
D-lim

nÑ8 µ1(j´n(A) X B)

= D-lim
nÑ8 µ1 b µ1

�
(j ˆ j)´n(A ˆ X1) X (B ˆ X1)

�

= µ1 b µ1(A ˆ X1)µ1 b µ1(B ˆ X1) = µ1(A)µ1(B)

(27.23)

proving that j is weakly mixing.
Next we will show that (3)^(1) ñ (4). For that assume y to be ergodic and pick

A1, B1 P G1 and A2, B2 P G2. Our goal is to show that

1
n

n´1ÿ

k=0

✓
µ1(j´k(A1) X B1)µ2(y

´k(A2) X B2) ´ µ1(A1)µ1(B1)µ2(A2)µ2(B2)

◆
(27.24)

tends to zero as n Ñ 8. By adding and subtracting appropriate terms, the absolute
value of this quantity is bounded by the sum of two terms:

In := µ1(A1)µ1(B1)

ˇ̌
ˇ̌ 1

n

n´1ÿ

k=0

⇣
µ2(y

´k(A2) X B2) ´ µ2(A2)µ2(B2)
⌘ˇ̌

ˇ̌ (27.25)

which tends to zero as n Ñ 8 because y is ergodic, and

IIn :=
1
n

n´1ÿ

k=0

ˇ̌
ˇ µ1(j´k(A1) X B1) ´ µ1(A1)µ1(B1)

ˇ̌
ˇ µ2(y

´k(A2) X B2) (27.26)

which tends to zero because µ2(y´k(A2) X B2) § 1 and j is weakly mixing.
The proof of (4) ñ (5) is easy: Pick X2 := t1u and let µ2 be the unique probability

measure on X2 and let y(1) := 1. Then y is ergodic and since j ˆ y is isomorphic to j,
so is j. But then (4) implies that j ˆ j is ergodic as well.

The final step is the proof of (5) ñ (2). Suppose that j is an m.p.t. on (X ,G, µ)
with µ(X ) = 1 and assume that j ˆ j is ergodic. The same argument as above shows
that also j is ergodic. Then for all A, B P G we have

1
n

n´1ÿ

k=0

ˇ̌
ˇ µ(j´k(A) X B) ´ µ(A)µ(B)

ˇ̌
ˇ
2

=
1
n

n´1ÿ

k=0

µ b µ
�
(j ˆ j)´k(A ˆ A) X (B ˆ B)

�

´ 2µ(A)µ(B)
⇣ 1

n

n´1ÿ

k=0

µ
�

j´n(A) X B
�⌘

+ µ(A)2µ(B)2 (27.27)

Thanks the ergodicity of j and j ˆ j, each term appearing on the right-hand side con-
verges to a constant times µ(A)2µ(B)2 and the total thus converges to zero. Then (2)
follows again by invoking Lemma 27.10 for the sum on the left. (Alternatively, we could
infer (1) by way of Jensen’s inequality.) ⇤

Here is a demonstration of how these conditions can be put to immediate use:
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Corollary 27.13 Irrational rotations of the unit circle are ergodic but not weakly mixing.

Proof. Let X := [0, 1) be endowed with Borel sets and the Lebesgue measure. Let
j : [0, 1) Ñ [0, 1) be defined by j(x) := x + a mod 1 where a P R r Q. Weyl’s Equidis-
tribution Theorem implies that j is ergodic. To show that j is not weakly mixing,
let f : [0, 1] Ñ R be bounded and measurable. Then g(x, y) := f (x ´ y) is j ˆ j-invariant
for any f but g is constant a.e. only if f is constant a.e. Hence j ˆ j is not ergodic. The-
orem 27.12 implies that j is not weakly mixing. ⇤

27.3 Further properties of weak mixing.

We now give a few more interesting facts about weakly mixing transformations. We
start with the following observation:

Lemma 27.14 Suppose (X ,G, µ) with µ a probability and G countably generated. Then an
m.p.t. j on (X ,G, µ) is weakly mixing iff there exists E Ñ N of zero density such that

@A, B P G : lim
nÑ8
nRE

µ
�

j´n(A) X B
�
= µ(A)µ(B), (27.28)

(In short, the zero-density set E can be chosen uniformly for all A, B.)

Lemma 27.15 If j is weakly mixing then so is jn for all n • 1. The same is true also for n
?

j
which is a notation for any m.p.t. y such that yn = j.

Lemma 27.16 An m.p.t. on (X ,G, µ) with µ(X ) = 1 is weakly mixing if and only if

@ f , g P L2 : lim
nÑ8

1
n

n´1ÿ

k=0

ˇ̌
ˇxTn f , gy ´ x f , 1yx1, gy

ˇ̌
ˇ = 0 (27.29)

where T f := f ˝ j and x¨, ¨y is the inner product in L2.

For our last result, recall that an invertible ergodic transformation corresponds to a
unitary operator that may have many eigenvalues but each of these has to be simple.
For weakly mixing transformation, we in turn get:

Theorem 27.17 (Spectral characterization of weak mixing) Let j be an measurably-inver-
tible m.p.t. on (X ,G, µ) with µ(X ) = 1. Let T : L2

Ñ L2 be the unitary operator defined by
T f := f ˝ j. Then j is weakly mixing if and only if 1 is the only eigenvalue of T and it is simple.

Proof. Let us first assume that j is weakly mixing and let l P C be an eigenvalue with
eigenvector f P L2; i.e., T f = l f . Since T is unitary, we have |l| = 1. Let g P L2. Then
xTn f , gy = ln

x f , gy and so D-lim nÑ8xTn f , gy exists if and only if l = 1.
For the converse we invoke the Spectral Theorem for unitary operators which says

that, for each f , g P L2 there exists complex-valued (finite) measure n f ,g concentrated
on tl P C : |l| = 1u such that

@n • 0 : xTn f , gy =
ª

tnn f ,g(dt) (27.30)
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Then
1
n

n´1ÿ

k=0

ˇ̌
xTk f , gy

ˇ̌2
=

1
n

n´1ÿ

k=0

ª
(ts̄)kn f ,g(dt)n̄ f ,g(ds)

=
ª ✓

1
n

n´1ÿ

k=0

(ts̄)k
◆

n f ,g(dt)n̄ f ,g(ds)

=
ª

1
n

1 ´ (ts̄)n

1 ´ ts̄
n f ,g(dt)n̄ f ,g(ds)

(27.31)

where the integrand is to be interpreted as 1 when ts̄ = 1. Since |ts̄| = 1, the integrand
converges to 1t1u(ts̄). Since it is also bounded, the Bounded Convergence Theorem im-
plies

lim
nÑ8

1
n

n´1ÿ

k=0

ˇ̌
xTk f , gy

ˇ̌2
=

ª
1t1u(ts̄)n f ,g(dt)n̄ f ,g(ds̄)

=
ª

n̄ f ,g(ttu)n f ,g(dt) =
ÿ

t

ˇ̌
n f ,g(ttu)

ˇ̌2
(27.32)

where we used Tonelli’s theorem.
If 1 is the only eigenvalue of T, then n f ,g(ttu) = 0 for all t ‰ 1. It follows that if f P

Ker(1 ´ T)K, then the right-hand side of (27.32) vanishes. Since 1 is also assumed to
be simple, f ´ x f , 1y1 P Ker(1 ´ T)K and so we get (27.29). Specializing to f := 1A
and g := 1B we get that j is weakly mixing. ⇤

Notice that this characterization allows us to give another proof of Corollary 27.13.
Indeed, as is directly checked, the function en(x) := e2pinx is an eigenfunction of the
rotation by a with eigenvalue e2pina. This equals one for all n P Z if and only if a P Z.

Weakly mixing transformations are useful in the studies of multiple recurrence and
other “fancy” topics in ergodic theory. We refer the reader to texts specializing on this
subject.
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