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26. RECURRENCE IN INFINITE MEASURE SPACES

We now move to discuss the differences that arise when the underlying measure space
is infinite and/or the map we have is not measure preserving.

26.1 Halmos’ Recurrence Theorem.

Motivated by the construction from the proof of the Poincaré Recurrence Theorem, we
put forward:

Definition 26.1 (Wandering set) Given a measurable map j : X Ñ X on a measurable

space (X ,G), a set W P G is said to be wandering if

W X

§

k•1

j´k(W) = H (26.1)

i.e., when @x P W @k • 1 : jk(x) R W.

An example of a wandering set is

W := A r
§

k•1

j´k(A) (26.2)

i.e., the set of x P A such that jk(x) R A for all k • 1. Here are some additional elemen-
tary observations:

Lemma 26.2 Let W be a wandering set. Then also j´1(W) is wandering and every W1
P G

with W1
Ñ W is wandering. Moreover, we have

 
j´k(W) : k • 0

(
are disjoint (26.3)

In particular, if µ is a measure preserved by j, then µ(X ) † 8 implies µ(W) = 0.

Proof. That j´1(W) and W1
Ñ W are wandering as well as (26.3) follow directly from

(26.1) and the properties of j´1. Since the sets in (26.3) are disjoint and of the same
measure, µ(X ) † 8 forces µ(W) = 0. ⇤

It is easy to come up with examples of wandering sets in infinite measure spaces.
For instance, taking (R,B(R)) and j(x) := x + 1, then any W Ñ [0, 1) is wandering.
Also note that if there exists a wandering set W of non-zero measure, then there is a
positive-measure set of points in W that are not recurrent with respect to W. As it turns
out, the existence of non-trivial wandering sets is the only obstruction to recurrence.
Interestingly, this works even without the measure-preserving property:

Theorem 26.3 (Halmos, 1947) Let (X ,G, µ) be a measure space and j : X Ñ X a mea-
surable map. Then the following are equivalent:

(1) j is recurrent in the sense

@A P G : µ

✓
A r

§

k•1

j´k(A)

◆
= 0 (26.4)
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(2) j is conservative in the sense

@A P G : A is wandering ñ µ(A) = 0 (26.5)

(3) j is incompressible in the sense

@A P G : j´1(A) Ñ A ñ µ
�

A r j´1(A)
�
= 0 (26.6)

Moreover, if j preimages null sets to null sets, i.e.,

@A P G : µ(A) = 0 ñ µ(j´1(A)) = 0 (26.7)

then (1-3) are also equivalent to
(4) j is infinitely recurrent in the sense

@A P G : µ

✓
A r

£

n•1

§

k•n

j´k(A)

◆
= 0 (26.8)

Proof. Observe that, given A P G, the set

W := A r
§

k•1

j´k(A) (26.9)

is wandering and, conversely, if A is a wandering set, then W = A. Hence, the existence
of a non-trivial wandering set is equivalent to the measure in (26.4) not being zero for
some A, proving the equivalence (1) ô (2).

Next, given any A, let B :=
î

k•0 j´k(A) and note that

j´1(B) Ñ B ^ B r j´1(B) = A r
§

k•1

j´k(A) (26.10)

It follows that (3) ñ (1). For the converse note that

j´1(A) Ñ A ñ

§

k•1

j´1(A) = j´1(A) (26.11)

and so
j´1(A) Ñ A ñ A r j´1(A) = A r

§

k•1

j´k(A) (26.12)

which now readily gives (1) ñ (3).
For the equivalence of (4) with the rest, suppose (26.7). Note that the set in (26.4) are

those x P A on which the iterations of j never return to A while the set in (26.8) is the
set of x P A on which the iterations of j return to A only finitely often. Hence, trivially,
(4) ñ (1). For the converse we note

✓
Ar

£

n•1

§

k•n

j´k(A)

◆
r

✓
A r

§

k•1

j´k(A)

◆

Ñ

§

n•0

✓
j´n(A)r

§

k•n+1

j´k(A)

◆
=

§

n•0
j´n

✓
A r

§

k•1

j´k(A)

◆ (26.13)

Under (1) and (26.7), each set in the union on the right is of zero measure, proving
(1) ñ (4) as desired. ⇤
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Hereby we get:

Corollary 26.4 (Halmos’ Recurrence Theorem) Let (X ,G, µ) be a measure space and let
j : X Ñ X be a measurable map with j´1 preserving null sets. Then j is conservative if and
only if

@A P G :
ÿ

k•0

1A ˝ jk = 8 µ-a.e. on A (26.14)

Proof. This is (1) ô (4) in Theorem 26.3 under (26.7). ⇤

26.2 Hopf decomposition.

As our next observation we note that, assuming that j is invertible with j and j´1

measurable and null-set preserving, the space X can always be partitioned into a part
where j acts conservatively and a part where it dissipative, (i.e., not recurrent on any
positive-measure subset thereof):

Theorem 26.5 (Hopf decomposition) Let (X ,G, µ) be s-finite and let j : X Ñ X be a
bimesurable bijection such that j and j´1 preserve null sets. Then there exists W P G such that

W is wandering (26.15)

and, denoting,
D :=

§

nPZ

jn(W) and C := X r D (26.16)

we have j(C) = C and j(D) = D. Moreover,

@A P G : A Ñ C ^ A wandering ñ µ(A) = 0 (26.17)

and so the restriction of j to C is conservative.

The proof uses quite crucially that j is invertible as a tool to get around the fact that
the union of two wandering sets is not necessarily wandering. Indeed, we instead use
the underlying structure to show that the union of the whole “doubly-infinite trajectory”
of two wandering sets is the (doubly infinite) trajectory of a wandering set. This is the
content of:

Lemma 26.6 Let (X ,G) be measure space and let j : X Ñ X be a bimesurable bijection.
Given W, W1

P G wandering, set

rW := W1 r
§

kPZ

jk(W) (26.18)

Then
W Y rW is wandering (26.19)

and
§

kPZ

jk(W Y rW) =

✓ §

kPZ

jk(W)

◆
Y

✓ §

kPZ

jk(W1)
◆

(26.20)
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Proof. For W, W1
P G wandering, define rW as above. Then rW, being a subset of a

wandering set, is wandering. We also have

@k ‰ 0 : rW X jk(W) = H ^ W X jk( rW) = H (26.21)

where the first part is by definition of rW and the second part follows from the first by
applications of j´1. The distributive law for intersections and unions yields

(W Y rW) X jk(W Y rW)

=
⇥
W X jk(W)

⇤
Y
⇥ rW X jk( rW)

⇤
Y
⇥
W X jk( rW)

⇤
Y
⇥ rW X jk(W)

⇤ (26.22)

For k ‰ 0, the first two sets on the right are empty because W and rW are wandering and
the other two sets are empty by (26.21). It follows that W X rW is wandering.

For (26.20) we use the definition of rW to note that

@k P Z : jk( rW) = jk(W1)r
§

kPZ

jk(W) (26.23)

This implies
§

kPZ

jk(W Y rW) =

✓ §

kPZ

jk(W)

◆
Y

✓ §

kPZ

jk(W1)r
§

kPZ

jk(W)

◆
(26.24)

which gives (26.20). ⇤
Proof of Theorem 26.5. As no non-null wandering sets exist when µ(X ) † 8, we may
assume that µ(X ) = 8. Thanks to the s-finiteness assumption, there are disjoint mea-
surable sets tXnun•0 such that X =

î
n•0 Xn and 0 † µ(Xn) † 8 for each n • 0.

For W P G set

F(W) :=
ÿ

n•0
2´n 1

µ(Xn)
µ

✓
Xn X

§

kPZ

jk(W)

◆
(26.25)

and, noting that F(W) § 2, let tWkuk•0 be a sequence of wandering sets such that F(Wk)
converges to

c := sup
 

F(W) : W P G ^ wandering
(

(26.26)

By Lemma 26.6 we may assume that tWkuk•0 is non-decreasing so let

W :=
§

k•0

Wk (26.27)

The Monotone Convergence Theorem then gives F(W) = c. Next we claim that W is
wandering. This follows by noting that, for k ‰ 0,

W X jk(W) =
§

j,`•0

Wj X jk(W`) Ñ

§

j,`•0

Wj_` X jk(Wj_`) = H (26.28)

where j _ ` := maxtj, `u and where in the last step we use that each Wj is wandering.
We conclude that W is a maximizer of (26.26).
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Define D and C as above and let W1
Ñ C be wandering. Then rW defined in (26.18)

obeys rW = W1. Using Lemma 26.6 it follows that W Y W1 is wandering and thatî
kPZ jk(W1) and

î
kPZ jk(W) are disjoint, and so

F(W Y W1) = F(W) + F(W1) (26.29)

Since W is a maximizer, we must have F(W1) = 0 implying that µ(W1) = 0. Thus C
contains no no-null wandering sets and j|C is conservative. ⇤

Theorem 26.5 gives us the partition

X = C Y D with C X D = H (26.30)

where C is the conservative part of X and D is the dissipative (or transient) part of X . For
bimeasurably bijective measure-preserving transformations the dissipative part occurs
only when µ(X ) = 8.

26.3 Stephanov-Hopf Ratio Ergodic Theorem.

Equipped with techniques to deal with infinite measure spaces, we now state another
ergodic theorem whose main power rests exactly in this context:

Theorem 26.7 (Ratio Ergodic Theorem, Stephanov 1936, Hopf 1937) Let (X ,G, µ, j) be
a m.p.s and let f , g P L1 with g • 0. There exists a measurable map R : X Ñ R with R = R ˝ j
such that

n´1ÿ

k=0

f ˝ jk

n´1ÿ

k=0

g ˝ jk

›Ñ
nÑ8 R a.e. on

" 8ÿ

k=0

g ˝ jk = 8

*
(26.31)

Moreover, Rg P L1 and if µ(
∞8

k=0 g ˝ jk
† 8) = 0 then

≥
f dµ =

≥
Rgdµ.

Before we delve into the proof, note that for µ finite, the choice g := 1 reduces to
Birkhoff’s Pointwise Ergodic Theorem. In this case we get that R = f̄ /ḡ, for f̄ and ḡ as
in Theorem 22.1. The power of Theorem 26.7 thus really rests with µ infinite. To demon-
strate this note that, for µ ergodic, Lemma 24.13 shows that f̄ = 0 and so Birkhoff’s
setting tells us nothing more than that

∞n´1
k=0 f ˝ jk is sublinear in n. The Ratio Ergodic

Theorem tells us that this sum grows at the same rate for both f and g.
A number of different proofs of Theorem 26.7 exist in the literature. We will follow

that of T. Kamae and M. Keane published in Osaka Journal of Mathematics in 1997. To
explain the main idea, consider strictly positive sequences tanun•0 and tbnun•0 and let

r := lim inf
NÑ8

b0 + ¨ ¨ ¨ + bN´1

a0 + ¨ ¨ ¨ + aN´1
(26.32)

Assuming
∞

k•0 bk = 8, the same r is obtained if the sums in the numerator and denom-
inator start from the n-th term. It follows that for each n • 0 there is m = m(n) • 0 such
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that
n+m´1ÿ

k=n

(r + e)ak •

n+m´1ÿ

k=n

bk (26.33)

The problem with this conclusion is our lack of control of how large m is. This can
be circumvented by replacing bn by 0 when m ° M and keeping bn as is otherwise.
Denoting the sequence thus modified as tb1

nun•0 we then have

@n • 0 Dm P t1, . . . , Mu :
n+m´1ÿ

k=n

(r + e)ak •

n+m´1ÿ

k=n

b1
k (26.34)

This is what now directly feeds into the following lemma:

Lemma 26.8 Let tanun•0 and tbnun•0 be two non-negative sequences for which there ex-
ists M • 1 with the property

@n • 0 Dm P t1, . . . , Mu :
n+m´1ÿ

i=n
ai •

n+m´1ÿ

i=n
bi (26.35)

Then

@N ° M :
N´1ÿ

i=0

ai •

N´1ÿ

i=0

bi (26.36)

Proof. Define tnkuk•0 recursively by n0 := 0 and, for k • 0,

nk+1 := inf
"

m • nk + 1 :
m´1ÿ

i=nk

ai •

m´1ÿ

i=nk

bi

*
(26.37)

The assumptions ensure

@k • 0 : nk+1 ´ nk P t1, . . . , Mu ^

nk+1´1ÿ

i=nk

ai •

nk+1´1ÿ

i=nk

bi (26.38)

Given N ° M, set kN := maxtk • 0 : nk † Nu and note that N ´ M § nk0 † N. We now
use positivity of ai and bi to get

N´1ÿ

i=0

ai •

kN´1ÿ

k=0

nk+1´1ÿ

i=nk

ai •

kN´1ÿ

k=0

nk+1´1ÿ

i=nk

bi •

N´Mÿ

i=0

bi (26.39)

thus giving us the desired claim. ⇤
As a consequence of Lemma 26.8, from (26.34) we thus have

@N ° M :
N´1ÿ

k=0

(r + e)ak •

N´M´1ÿ

k=0

b1
k (26.40)

If we could pretend that b1
k equals bk on the right, this would now bound the limes superior

of the ratios in (26.32) by r + e, which in light of e being arbitrary forces the existence
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of the limit (in extended R). Of course, b1
k is different from bk and so this does not quite

work, but the actual proof is not far from that:

Proof of Theorem 26.7. For h : X Ñ R abbreviate hn :=
∞n´1

k=0 h ˝ jk. By decomposing f
into positive and negative parts, it suffices to prove the claim for f • 0. Set

X 1 :=
" 8ÿ

k=0

g ˝ jk = 8

*
(26.41)

and let

R(x) := 1X 1(x) lim inf
nÑ8

fn(x)
gn(x)

(26.42)

where the indicator takes care of the limes inferior being potentially undefined for x R X 1.
Given any e ° 0, we then have

@x P X 1 : n(x) := inf
!

n • 1 : fn(x) §
⇥
R(x) + e

⇤
gn(x)

)
† 8 (26.43)

For M • 1, set

h(x) :=

#
f (x), if n(x) § M
0, else

(26.44)

For each x P X 1 we then have
⇥
R(x) + e

⇤
gm(x) • hm(x) (26.45)

with m := n(x) if n(x) § M and m := 1 if n(x) ° M. Replacing x by jn(x) while using
that j´n(X 1) = X 1 and that R ˝ jn = R, it follows that, for all x P X 1,

@n • 0 Dm = 1, . . . , M :
n+m´1ÿ

i=n

⇥
R(x) + e

⇤
g ˝ ji(x) •

n+m´1ÿ

i=n
h ˝ ji(x) (26.46)

Hence we get
@x P X 1

@N ° M :
⇥
R(x) + e

⇤
gN(x) • hN´M(x) (26.47)

by invoking Lemma 26.8.
Integrating (26.47) on X 1 we now obtain

N
ª

X 1
[R + e]g dµ =

ª

X 1
[R + e]gN dµ

•

ª

X 1
hN´M dµ = (N ´ M)

ª

X 1
h dµ

(26.48)

where we used j-invariance of X 1 and R. For the last integral we note
ª

X 1
h dµ •

ª

X 1
f dµ ´

ª
f 1tn°Mudµ (26.49)

Dividing (26.48) by N and taking N Ñ 8, we combine these to
ª

X 1
[R + e]g dµ •

ª

X 1
f dµ ´

ª
f 1tn°Mu (26.50)
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We then conclude ª

X 1
Rg dµ •

ª

X 1
f dµ (26.51)

by noting that f , g P L1 allows us to take e Ó 0 and n † 8 allows us to take M Ñ 8

using Dominated Convergence Theorem.
We will now use pretty much the same reasoning to derive a converse inequality

with R replaced by

R(x) := 1X 1(x) lim sup
nÑ8

fn(x)
gn(x)

(26.52)

For any e P (0, 1) abbreviate Re(x) := maxte´1, R(x)u and note that then

@x P X 1 : n(x) := inf
!

n • 1 : fn(x) • (1 ´ e)Re(x)gn(x)
)

† 8 (26.53)

For M • 1, set

h(x) :=

#
f (x), if n(x) § M
e´1g(x), else

(26.54)

Using that (1 ´ e)Re(x) § e´1 along with j´k(X 1) = X 1 and Re ˝ j = Re on X 1, for
each x P X 1 we now have

@n • 0 Dm = 1, . . . , M :
n+m´1ÿ

i=n
h ˝ ji(x) •

n+m´1ÿ

i=n
(1 ´ e)Re(x)g ˝ ji(x) (26.55)

Lemma 26.8 then gives

@x P X 1
@N ° 0 : hN+M(x) • (1 ´ e)Re(x) gN(x) (26.56)

Integrating we again turn this into

(N + M)
ª

X 1
h dµ =

ª

X 1
hN+M dµ

• (1 ´ e)
ª

X 1
Re gN dµ = N(1 ´ e)

ª

X 1
Reg dµ

(26.57)

and for the integral on the left we get
ª

X 1
h dµ §

ª

X 1
f dµ + e´1

ª
g1tn°Mu dµ (26.58)

Dividing (26.57) by N, taking N Ñ 8 and then taking M Ñ 8 followed by e Ó 0 with
the help of Dominated and Monotone Convergence Theorems yields

ª

X 1
f dµ •

ª

X 1
Rg dµ (26.59)

which is complementary (with R replaced by R) to (26.51).
Next observe that the j-invariance of R implies

≥
Rg ˝ jkdµ =

≥
Rgdµ. The bound

(26.59) then gives

@n • 1 :
ª

X 1

✓ nÿ

k=0

g ˝ jk
◆

R dµ † 8 (26.60)
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Since the sum is eventually positive at each point of X 1, we conclude that R † 8 a.e.
on X 1. Next observe that the inequalities (26.51) and (26.59) imply

ª

X 1
[R ´ R] g dµ = 0 (26.61)

which (similarly as for (26.60)) with the help of non-negativity and j-invariance of R ´ R
and the Monotone Convergence Theorem yields

ª

X 1
[R ´ R]

✓ ÿ

k•0

g ˝ jk
◆

dµ = 0 (26.62)

It follows that R = R a.e. on X 1 and, since R † 8 a.e. on X 1, the convergence (26.31)
takes place with R := 1tR†8uR. The inequalities (26.51) and (26.59) give

ª

X 1
f dµ =

ª
Rg dµ (26.63)

and so Rg P L1. If µ(
∞

k•0 g ˝ jk
† 8) = 0, then we can drop X 1 from the first integral

and get
≥

f dµ =
≥

Rgdµ. ⇤
We remark that while the condition that

∞8
k=0 g ˝ jk = 8 is used crucially in the proof,

the trivial fact that
n´1ÿ

k=0

f ˝ jk

n´1ÿ

k=0

g ˝ jk

›Ñ
nÑ8

ÿ

k•0

f ˝ jk

ÿ

k•0

g ˝ jk on
"

0 †

8ÿ

k=0

g ˝ jk
† 8

*
(26.64)

yields the convergence part of the claim as soon as
∞8

k=0 g ˝ jk
° 0 and f • 0. Note also

that this special case arises only if X has a non-trivial dissipative part (i.e., a subset on
which j is transient).
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