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24. ERGODICITY

The ergodic theorems tell us that “ergodic averages” of any integrable f converge to a
function f̄ that is invariant under the action of the m.p.t. However, we do not learn
much about how f̄ depends on its argument and, taken statistically, how wildly is f̄
“distributed” over the underlying measure space. This is what we will address here.

24.1 Invariant sets and ergodicity.

We start by introducing notions that encode the invariance property of f̄ :

Definition 24.1 Let (X ,G, µ, j) be a measure-preserving system. A set A P G is

(1) invariant if j´1(A) = A, and

(2) almost invariant if j´1(A) = A µ-a.e., which means µ(j´1(A)4A) = 0.

We then have:

Lemma 24.2 The families

I := tA P G : A invariantu (24.1)

and
I 1 := tA P G : A almost invariantu (24.2)

are s-algebras. Moreover, for all A P G and all measurable f : X Ñ R,
(1) @A P I 1

DB P I : µ(A4B) = 0,
(2) f ˝ j = f µ-a.e. ñ there exists g such that f = g µ-a.e. and g is I -measurable.

Proof. That I and I 1 are s-algebras is checked directly. Fir (1) let A P F and set

B :=
£

n•0

§

k•n

j´k(A) =
 

x P X : jn(x) P A i.o.
(

(24.3)

Then j´1(B) = B and so B P I . Since j´k(A) = A µ-a.e., we have B = A µ-a.e. We
leave the proof of (2) to a homework exercise. ⇤

The previous lemma shows that we can pretty much neglect the difference between
almost invariant and invariant events. Next we will give a probabilistic interpretation
to the limit object in the Pointwise Ergodic Theorem:

Corollary 24.3 (Birkhoff-Khinchin theorem) Let (X ,G, µ) be a probability space and let
j : X Ñ X be a measure-preserving transformation. Then for all X P L1,

1
n

n´1ÿ

k=0

f ˝ jk
›Ñ
nÑ8 E( f |I ), a.s. (24.4)

Proof. Since µ(X ) the convergence of ergodic averages takes place in L1. If A P I , then
(writing expectations for integrals with respect to µ) for all k • 0,

E( f 1A) = E( f ˝ jk 1A ˝ jk) = E( f ˝ jk1A) (24.5)
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by the fact that µ is preserved by jk and that 1A ˝ j = 1A. Averaging over k = 0, . . . , n ´ 1
then gives

E(1A f ) = E
✓
1A

1
n

n´1ÿ

k=0

f ˝ jk
◆

›Ñ
nÑ8 E(1A f̄ ). (24.6)

But f̄ has a I -measurable version and so f̄ = E( f |I ) µ-a.s. ⇤
The interpretation of the limit as conditional expectation now suggests:

Definition 24.4 (Ergodicity) An m.p.t. j on (X ,G, µ) is said to be ergodic with respect
to µ (or, equivalently, the measure µ is ergodic with respect to a m.p.t. j) if µ is trivial on

j-invariant sets in the sense that

@A P I : µ(A) = 0 _ µ(Ac) = 0 (24.7)

If both j and µ are given, we also say that that the m.p.s. is ergodic if (24.7) holds.

We adopt the convention (not always heeded in the literature) that ergodicity of a
measure µ entails invariance under j. (Otherwise, we would have to say “invariant and
ergodic” which is longer.) Note that, for µ a probability measure, we can consolidate the
defining property as

µ is ergodic ô DA P I : µ(A) P t0, 1u (24.8)

which gives ergodicity the structure of a zero-one law. The above definition is designed
to include infinite measures as well.

24.2 Examples and non-examples.

Let us now give some examples in which ergodicity holds. We start with:

Lemma 24.5 i.i.d. shifts are ergodic. More precisely, if (SN, SN, nbN) is a product probability
space and q : SN

Ñ SN is the left shift, then q is ergodic.

Proof. Let Xk be the coordinate projection on the k-th coordinate. Given A P I , we
have A = q´n(A) for each n • 1. Since, equivalently, A P s(X0, X1, . . . ) this gives that
A = q´n(A) P s(Xn, Xn+1, . . . ) for all n • 0 and so

A P

£

n•1

s(Xn, Xn+1, . . . ) (24.9)

i.e., A is a tail event. By Komogorov’s zero-one law, A has probability either zero or one.
Hence q is ergodic. ⇤

Hereby we get:

Corollary 24.6 The “continued fractions” (Example 20.10) and “Baker’s transform” (Exam-
ple 20.12) m.p.s. are ergodic.

This follows by the fact that both of these systems are “coded” (which technically
means “bijectively bimesurable correspondence” with) i.i.d. sequences. We leave the
details to the reader.
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We note that encoding of a measure-preserving system in terms of a Bernoulli shift
is a recurrent theme in ergodic theory. In fact, systems for which such an encoding is
possible are referred to as Bernoulli. The question often asked is: What invariants (i.e.,
properties preserved by above measure-preserving bijections) are sufficient to check to
see that a system is Bernoulli. One of these is entropy.

Another example we already analyzed comes in:

Lemma 24.7 Irrational rotations of the circle are ergodic.

Proof. Let ja : [0, 1) Ñ [0, 1) be defined by ja(x) := x + a mod 1 for some a P R r Q.
In Theorem 21.5(1) we showed that f ˝ ja = f implies that f is constant Lebesgue a.e..
Using this for f := 1A, where A P I we get that the Lebesgue measure of A is either
zero or one, as desired. ⇤

Insofar we have only mentioned examples in which µ was a probability measure.
Here is an example in which µ is infinite:

Theorem 24.8 (Boole transform) Consider the measure space (R,B(R), l) where l is the
Lebesgue measure. Let j : R Ñ R be the map

j(x) :=

#
x ´ 1/x, if x ‰ 0,
0, if x = 0,

(24.10)

Then j is a m.p.t. which, moreover, is ergodic.

The proof of the measure-preserving property is relegated to homework. The proof of
ergodicity is more difficult and can be found in a paper by R.L. Adler and B. Weiss “The
ergodic measure-preserving transformation of Boole” in Israel J. Math, 1973.

Having given some examples, let us move to non-examples:

Lemma 24.9 Let (S, S) be a standard Borel space and let tXkuk•1 be exchangeable S-valued
random variables. Use µ to denote their law on (SN, SbN) and let q denote the left shift. Then q
preserves µ and

µ is ergodic ô µ is i.i.d. (24.11)

In particular, all exchangeable measures on (SN, SbN) that are not i.i.d. are not ergodic.

Proof. Exchangeability ensures that

(X1, . . . , Xn)
law
= (X2, . . . , Xn+1) = (X1, . . . , Xn) ˝ q (24.12)

proving that µ ˝ q = µ on cylinder sets. Since the cylinder sets generate the s-algebra SbN,
the equality holds on SbN.

For the second part of the statement, by Lemma 24.5 it suffices to prove the implica-
tion ñ. Let A P S, set Sn :=

∞n
k=1 1A(Xk) and note that Sn ˝ q =

∞n+1
k=2 1A(Xk). Letting

U := lim supnÑ8
Sn
n , de Finetti’s Theorem and a simple argument then tell us

Sn

n
›Ñ
nÑ8 U a.s. ^

Sn

n
˝ q ›Ñ

nÑ8 U a.s. (24.13)
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It follows that U ˝ q = U µ-a.s. Since µ is assumed ergodic, we have U = µ(A) a.s.
Now recall that the de Finetti-Hewitt-Savage Theorem (Theorem 18.8) gives

µ(¨) =
ª

nbN(¨)r(dn) (24.14)

Since

nbN

✓
lim

nÑ8
Sn

n
= n(A)

◆
= 1 (24.15)

we have
@t P [0, 1] : µ(U § t) = r

�
n P M1(S) : n(A) § t

�
(24.16)

But t fiÑ µ(U § t) jumps from 0 to 1 at µ(A) which is only possible if n(A) = µ(A)
for r-a.e. n. This means that r is a singleton and µ is thus i.i.d. ⇤

Another non-example comes in:

Lemma 24.10 Rational rotations (by a) of the circle are NOT ergodic w.r.t. the Lebesgue mea-
sure but are ergodic with respect to measures of the form

1
q

q´1ÿ

k=0

dz+k/q mod 1 (24.17)

where z P R and q P N is such that a = p/q with 0 § p † q and gcd(p, q) = 1. (We thus have
a continuum of ergodic measures in this case.)

Proof. Let a = p/q with p and q as above. Then for each x P [0, 1) and each f : [0, 1) Ñ R,

1
n

n´1ÿ

k=0

f ˝ ja(x) ›Ñ
nÑ8

1
q

q´1ÿ

k=0

f (x + k/q mod 1) (24.18)

To see this observe that kp/q P N and gcd(p, q) = 1 force k P qN. Stopping the sum on
the left at the largest multiple of q less or equal than n ´ 1 then gives the left-hand side
plus errors of order q/n. Since the right-hand side is definitely NOT constant Lebesgue
a.e., the Lebesgue measure is NOT ergodic. But the quantity is constant w.r.t. the mea-
sure (24.17) a.s. and so that measure is ergodic. ⇤

A non-example with infinite mass is easy to construct: Take (R,B(R), l) with l the
Lebesgue measure and let j(x) := x + 1. Then any 1-periodic function is invariant and
so j is NOT ergodic.

24.3 Necessary and sufficient conditions.

We now proceed to give necessary and sufficient conditions for ergodicity. We start with:

Lemma 24.11 Let (X ,G, µ, j) be an m.p.s. Then the following are equivalent:
(1) j is ergodic
(2) for all measurable h : X Ñ R,

h = h ˝ j a.e. ñ Dc P R : h = c a.e. (24.19)

It actually suffices to check (2) for h P L8 and, in fact, h of the form h = 1A.
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Proof. If (2) holds then for each A P I , for which 1A = 1A ˝ j, we have 1A = c a.e.
But this is only possible if c P t0, 1u. Hence, either µ(A) = 0 or µ(Ac) = 0 implying (1).
Since only indicators are involved, it is enough to check (2) for indicators.

Conversely, suppose (1) and let h obey h = h ˝ j a.e. Define

c := sup
 

a P R : µ(h † a) = 0
(

(24.20)

Since th † cu =
î

n•1th † c ´ 2´n
u, we get µ(h † c) = 0 by the Monotone Convergence

Theorem. This rules out that c = +8 because h is assumed to be real valued. Next,
µ(h § c+ 2´n) ° 0 and, since µ is ergodic, we thus have µ(h ° c+ 2´n) = 0 for all n • 1.
Using that th ° cu =

î
n•1th ° c + 2´n

u, the Monotone Convergence Theorem again
gives µ(h ° c) = 0. It follows that µ(h ‰ c) = 0, proving (2). ⇤

For finite measure spaces we get the following criterion:

Lemma 24.12 Let (X ,G, µ, j) be a m.p.s. with µ(X ) † 8. Then

j ergodic ô @ f P L1 :
1
n

n´1ÿ

k=0

f ˝ jk
›Ñ
nÑ8

1
µ(X )

ª
f dµ a.e. (24.21)

Proof. By the Pointwise Ergodic Theorem, the “ergodic averages” converge to f̄ a.e.
Since µ(X ) † 8, the convergence is in L1 and so

≥
f̄ dµ =

≥
f dµ. Ergodicity then implies

that f̄ is constant a.e. and so µ(X ) f̄ =
≥

f dµ. On the other hand, if the claim on the right
of (24.21) holds for f = 1A with A P I , then 1A = µ(A)/µ(X ), i.e., either µ(A) = 0
or µ(Ac) = 0 and so j is ergodic. ⇤

Note that the need for division by µ(X ) is not why we had to restrict to µ(X ) † 8.
Indeed, the implication ñ holds in this case as well:

Lemma 24.13 Let (X ,G, µ, j) be a m.p.s. with µ(X ) = 8. Then

j ergodic ñ @ f P L1 :
1
n

n´1ÿ

k=0

f ˝ jk
›Ñ
nÑ8 0 a.e. (24.22)

Proof. The “ergodic averages” converge to f̄ P L1 a.e. which by Lemma 24.11 is con-
stant a.e. and so must vanish a.e. because non-zero constants are not integrable. ⇤

We note that the converse to (24.22) fails in general when µ(X ) = 8. This boils
down to the familiar example (R,B(R), l, j), where l is the Lebesgue measure and
j(x) := x + 1. Indeed, all j-invariant functions are 1-periodic, and so is thus the limit of
the “ergodic averages,” but none of these is in L1 except that which vanishes a.e. Hence,
the limit on the right of (24.22) is zero a.e. for all f P L1 yet j is not ergodic.

Another version of the criterion in Lemma 24.12 comes in:

Lemma 24.14 Let (X ,G, µ, j) be a m.p.s. with µ(X ) = 1. Then

j ergodic ô @A, B P G :
1
n

n´1ÿ

k=0

µ
�

j´k(A) X B
�

›Ñ
nÑ8 µ(A)µ(B) (24.23)
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Proof. Writing x¨, ¨y for the inner product in L2, we have

1
n

n´1ÿ

k=0

µ
�

j´k(A) X B
�
=

B
1
n

n´1ÿ

k=0

1A ˝ jk, 1B

F
(24.24)

The first term converges to P1A in L2 by the Mean Ergodic Theorem, where P is the
projection on the subspace of invariant functions. The condition on the right is thus
equivalent to

@A, B P G : xP1A, 1By = µ(A)µ(B) (24.25)
Testing this against B := tP f † µ(A)u and B := tP f ° µ(A)u implies and then is
checked to be equivalent to

@A P G : P1A = µ(A) (24.26)
By Lemma 24.12 this is equivalent to ergodicity. ⇤

The last condition relies on spectral calculus:

Lemma 24.15 Let (X ,G, µ, j) be a m.p.s. with µ(X ) † 8. For f P L2 set T f := f ˝ j.
Then T is an isometry in L2 such that the following are equivalent:

(1) j is ergodic
(2) 1 is a simple eigenvalue of T
(3) every eigenvalue of T is simple

Moreover, the eigenvalues of T form a subgroup of te2pit : t P [0, 1)u.

Proof. Recall that l P C is an eigenvalue of an operator T on L2 if there exists f P L2 such
that T f = l f . (Such an f is then called an eigenvector.) Alternatively, l is an eigenvalue
if Ker(l ´ T) ‰ t0u. The eigenvalue l is simple if dim Ker(l ´ T) = 1. Note also that
the fact that T is an isometry means that all eigenvalues of T are complex modulus 1.
This follows by noting that T f = l f implies

x f , f y = xT f , T f y = |l|
2
x f , f y (24.27)

where the first line is by T being an isometry and the second line by the sequilinear
character of the inner product (which, even in spaces over R, has to be taken as over C).

Note that 1 is always an eigenvalue because 1 P L2 and T1 = 1. If f is such that T f =
f then f is invariant and so, since ergodicity is equivalent to f being a constant, it is
equivalent to Ker(1 ´ T) being one-dimensional. This proves (1) ô (2). Since (3) ñ (2)
is trivial, it remains to prove (1) ñ (3). Here we need to argue a bit more. First observe
that, if T f = l f then

|T f | = | f ˝ j| = | f | ˝ j = T| f | (24.28)
and so | f | P Ker(1 ´ T). But then | f | is constant and, being non-zero, f ‰ 0 a.s. Next set
Tg = l1g and note that

T(g/ f ) =
g ˝ j

f ˝ j
=

l1

l
(g/ f ) (24.29)

and so g/ f P Ker(l1/l ´ T). If l1 = l then g/ f P Ker(1 ´ T) and g/ f equals a constant,
proving that Ker(l ´ T) is one-dimensional as well, showing (1) ñ (3).
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The last argument shows that if l and l1 are eigenvalues, then so is l1/l. Since
T f = l f implies that the complex conjugate g of f obeys Tg = l´1g, for l´1 being
the complex conjugate of l, we have shown that the set of eigenvalues is closed under
multiplication and division and contains 1, and so is a subgroup of the circle group. ⇤

Two remarks are in order. First, the spectral representation of T gives us yet another
way to prove the Mean Ergodic Theorem for invertible maps by methods similar to the
proof of the Weil Equidistribution Theorem. (Indeed, if j is invertible then T is unitary
and, under the spectral measure, reduces to a multiplication operator by a l with |l| = 1
whose powers average to zero unless l = 1.) Second, while the characterization using
eigenvalues may appear useful, in practice this is obfuscated by the rest of the spectrum
which is often the whole unit circle.

24.4 Ergodicity as irreducibility property.

As our final topic, we will note that ergodicity is basically an irreducibility property
(similar as being i.i.d. was an irreducibility property among exchangeable measures).
We start with:

Lemma 24.16 (Mutual singularity) Let (X ,G) be a measurable space, j : X Ñ X a mea-
surable map and µ1, µ2 two j-invariant ergodic probability measures. Then

µ1 K µ2 on I _ µ1 = µ2 (24.30)

Proof. Let µ1 and µ2 be both j-ergodic. If µ1 ‰ µ2, then there exists A P G such
that µ1(A) ‰ µ2(A). For i = 1, 2 set

Ei :=
"

lim sup
nÑ8

1
n

n´1ÿ

k=0

1A ˝ jk = µi(A)

*
(24.31)

Lemma 24.12 then gives
µ1(E1) = 1 ^ µ2(E2) = 1 (24.32)

But E1 X E2 = H and E1, E2 P I so µ1 K µ2 on I . ⇤
As a consequence we get:

Lemma 24.17 (Extremality) Let (X ,G) be a measurable space, j : X Ñ X a measurable
map and µ1, µ2, µ probability measures that are j-invariant and such that

Da P [0, 1] : µ = aµ1 + (1 ´ a)µ2 (24.33)

Then
µ ergodic ñ a P t0, 1u _ µ1 = µ2 (24.34)

In short, ergodic measures are extremal in the convex set of invariant measures.

Proof. Suppose µ is ergodic and a P (0, 1). Then µ(A) P t0, 1u implies µ1(A) = µ2(A) P

t0, 1u and so µ1 = µ2 on I . Lemma 24.16 then gives µ1 = µ2 as desired. ⇤
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One can push this further to show that every j-invariant measure µ can be written as
a unique convex combination of ergodic measures as

µ(¨) =
ª

n(¨)r(dn) (24.35)

where
r
�
tn P M1(X ) : ergodicu

�
= 1 (24.36)

Such a statement is referred to as ergodic decomposition. The precise formulation requires
topological conditions on the underlying space and also arguments that would not be
too illuminating at this point and so we omit it.
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