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23. MORE ON POINTWISE CONVERGENCE

We will now generalize the above ideas further to give statements and proofs of a few
other ergodic theorems that are interesting both for the theory and its applications.

23.1 Spatial Ergodic Theorem.

We start with a multi-dimensional version of Birkhoff’s theorem. Our proof will also
extend the relevant parts of Birkhoff’s theorem to infinite measure spaces. Given a
set L Ñ Zd, denote its edge boundary as

BL :=
 
(x, y) P Zd

ˆ Zd : x P L ^ y R L ^ }x ´ y}8 = 1
(

(23.1)

The statement is as follows:

Theorem 23.1 (Spatial Ergodic Theorem) Let (X ,G, µ) be a measure space with µ(X )
finite or infinite. Given an integer d • 1, let j1, . . . , jd be measure-preserving transformations
on (X ,G, µ) that commute, i.e.,

@i, j = 1, . . . , d : ji ˝ jj = jj ˝ ji (23.2)

For all f P L1 there exists f̄ P L1 such that for all sets Ln Ñ Zd with

@n • 1 : H ‰ Ln Ñ [0, n)d (23.3)

and
lim inf

nÑ8
|Ln|

nd ° 0 ^ lim
nÑ8

|BLn|

nd = 0 (23.4)

we have
1

|Ln|

ÿ

xPLn

f ˝ jx ›Ñ
nÑ8 f̄ a.e. (23.5)

where j(x1,...,xn) := jx1
1 ˝ ¨ ¨ ¨ ˝ jxd

d . If µ(X ) † 8 then the convergence is in L1.

The proof will again go via a maximal inequality which we now prove using methods
taken from differentiation theory for Lebesgue integrals; namely, a discrete version of
Wiener’s covering lemma:

Lemma 23.2 (Maximal inequality in Nd) Given h : Nd
Ñ R and, for k • 1, abbreviate

Bk(x) := x + [0, k)d
X Nd. Set

h‹
n(x) := max

k=1,...,n

1
|Bk(x)|

ÿ

zPBk(x)

ˇ̌
h(z)

ˇ̌
(23.6)

Then

@l ° 0 :
ˇ̌
tx P Bn(0) : h‹

n(x) ° lu

ˇ̌
§

3d

l

ÿ

zPB2n(0)

ˇ̌
h(z)

ˇ̌
(23.7)

Proof. The set tx P Bn(0) : h‹
n(x) ° lu is covered by the collection of boxes

"
Bk(x) : x P Bn(0), k = 1, . . . , n,

ÿ

xPBk(x)

ˇ̌
h(z)

ˇ̌
° lBk(x)

*
. (23.8)
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Let B1, . . . , Bm enumerate these in decreasing order of their linear size let xi and ki be
such that Bi = Bki(xi). Denote by

rBi := xi + [´ki, 2ki)
d

X Nd (23.9)

be a box of three times the size centered at the same point as Bi. We construct a sequence
of indices i1, . . . , iq recursively as follows: Set i1 := 1 and, assuming that i1, . . . , ik have
been defined, set ik+1 := minti ° ij : xi R rBi1 Y ¨ ¨ ¨ Y rBik u if the set under the minimum is
non-empty or, if otherwise, put q := k and terminate. The construction implies

 
x P Bn(0) : h‹

n(x) ° l
(

Ñ

m§

k=1

rBik (23.10)

However, the key point is that

Bi1 , . . . , Biq are disjoint (23.11)

which follows by noting that if we had Bik X Bi` ‰ H for some k † `, then we would
have Bi` Ñ rBik contradicting xi` R rBik as forced by the construction.

To prove the statement, we now note that (23.10) along with |rBik | = 3d
|Bik |, the defini-

tion of the boxes and (23.11) gives

ˇ̌
tx P Bn(0) : h‹

n(x) ° lu

ˇ̌
§

qÿ

k=1

|rBik | = 3d
qÿ

k=1

|Bik |

§
3d

l

qÿ

k=1

ÿ

xPBik

ˇ̌
h(z)

ˇ̌
§

3d

l

ÿ

xPB2n(0)

ˇ̌
h(z)

ˇ̌
(23.12)

where we also noted that Bi1 , . . . , Biq Ñ B2n(0) in the last step. ⇤
We now convert this into:

Corollary 23.3 (Maximal inequality in measure space) Given a measure space (X ,G, µ)
with µ(X ) finite or infinite and a family of m.p.t.’s tjx : x P Nd

u such that jx+y = jx ˝ jy
hold for all x, y P Nd, we have

@ f P L1
@l ° 0 : µ( f ‹

° l) §
6d

l
} f }1 (23.13)

where

f ‹ := sup
n•1

1
|Bn(0)|

ÿ

zPBn(0)

| f | ˝ jx (23.14)

In particular, f P L1 implies f ‹
† 8 a.e.

Proof. Let f P L1 and, for x P Zd with non-negative coordinates, set h(x) := f ˝ jx. Set

Mn f := sup
k=1,...,n

1
|Bk(0)|

ÿ

zPBk(0)

| f | ˝ jx (23.15)
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and note that then h‹
n(x) = Mn f ˝ jx thanks to the assumption that jx+y = jx ˝ jy.

Integrating (23.7) over µ while using that jx is µ-preserving yields

µ(Mn f ° l) =
1

|Bn(0)|

ÿ

xPBn(0)

ª
1tMn f °lu ˝ jx dµ

=
1

|Bn(0)|

ª  
x P Bn(0) : Mn f ° lu

ˇ̌
dµ

§
3d

l

1
|Bn(0)|

ª ÿ

xPB2n(0)

| f | ˝ jx dµ =
6d

l

ª
| f |dµ

(23.16)

where we used that |B2n(0)| = 2d
|Bn(0)|. Since

f ‹ := sup
n•1

Mn f (23.17)

the Monotone Convergence Theorem then gives the claim. ⇤
Proof of Theorem 23.1. We will proceed as in our second proof of Birkhoff’s theorem,
modulo caveats due to the general form of sets tLnun•1 and the fact that µ(X ) is now
allowed to be infinite (and L2 may not be a subset of L1).

Let j1, . . . , jd be the m.p.t.’s as in the statement and pick f of the form

f = g +
dÿ

i=1

(hi ´ hi ˝ ji) (23.18)

for some g, h1, . . . , hd P L1
X L8. We claim that for any sequence tLnun•1 as in the

statement, the limit (23.5) exists and equals g. For this it suffices to show that, for all
h P L1

X L8 and i = 1, . . . , d,
1

|Ln|

ÿ

xPLn

(h ´ h ˝ ji) ˝ jx ›Ñ
nÑ8 0 (23.19)

This follows from the fact that, by writing the sum over the i-th coordinate first and
integrating the gradients, we have

ˇ̌
ˇ̌

ÿ

xPLn

(h ´ h ˝ ji) ˝ jx

ˇ̌
ˇ̌ § }h}8|BLn| (23.20)

and so we get (23.19) from |BLn|/|Ln| Ñ 0 as implied by (23.4).
Next we claim that

"
f P L1 : lim

nÑ8
1

|Ln|

ÿ

xPLn

f ˝ jx exists a.e.
*

is closed in L1 (23.21)

Let t fkuk•1 be a sequence in this set such that fk Ñ f in L1. Abbreviating An f :=
1

|Ln|
∞

xPLn
f ˝ jx, on t| fk ´ f |

‹
§ eu the containment Ln Ñ Bn(0) gives

@n • 1 : An fk ´ e § An f § An fk + e (23.22)
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and so
f̄k ´ e § lim inf

nÑ8 An f § lim sup
nÑ8

An f § f̄k + e a.e. (23.23)

where f̄k denotes the a.e. value of limnÑ8 An fk. Noting that the Maximal Inequality
(23.13) implies f̄k is finite a.e., we may subtract the left-hand side from the right-hand
side to get

µ

✓
lim sup

nÑ8
An f ´ lim inf

nÑ8 An f ° 2e

◆

§ µ
�

| fk ´ f |
‹

° e
�

§
6d

e
} fk ´ f }1

(23.24)

by one additional application of (23.13). Taking k Ñ 8 followed by e Ó 0 we conclude
that limnÑ8 An exists and is finite a.e. as well, proving (23.21).

To prove the convergence part of the claim, we again observe that, by the argument
underlying the proof of the Mean Ergodic Theorem,

L :=

#
g +

dÿ

i=1

(hi ´ hi ˝ ji) : g, h1, . . . , hd P L1
X L8

^ @i = 1, . . . , d : g = g ˝ ji

+
(23.25)

is dense in L2. Let f P L1
X L8. The Maximal Inequality then ensures that

Ek :=
 

lim sup
nÑ8

|An f | ° 1/k
(

(23.26)

is an invariant set with µ(Ek) † 8 for each k. Assuming k is such that µ(Ek) ° 0, the
function fk := f 1Ek is then in L2 and so, given e ° 0, there exist f 1

P L such that

} fk ´ f 1
}2 † e[1 + µ(Ek)]

´1/2 (23.27)

But f 1 = g +
∞d

i=1(hi ´ hi ˝ ji) and so, denoting f̃ 1 := f 1Ek , we then have f̃ 1 = g̃ +∞d
i=1(h̃i ´ h̃i ˝ ji) with g̃ := g1Ek and h̃i := hi1Ek ; i.e., f̃ 1

P L as well. Moreover, } fk ´

f̃ 1
}2 † e[1 + µ(Ek)]´1/2 holds by restricting the integration to Ek. As fk ´ f̃ 1 is supported

in the finite measure set Ek, the Cauchy-Schwarz inequality gives

} fk ´ f̃ 1
}1 § µ(Ek)

1/2
} fk ´ f 1

}2 † e
µ(Ek)1/2

[1 + µ(Ek)]1/2 † e (23.28)

As this holds for all e ° 0, we conclude that fk lies in L1-closure of L . Noting that An fk =
1Ek An f , from L being a subset of the set in (23.21) we then get that limnÑ8 An f exists
a.e. on Ek, for each k • 1.

In light of
X r

§

k•1

Ek = tlim sup
nÑ8

|An f | = 0u (23.29)

we have that limnÑ8 An f exists a.e., and the set in (23.21) contains, all f P L1
X L8. Since

L1
X L8 is dense in L1 by Dominate Convergence, the a.e. convergence takes places

for all f P L1, as we desired to show. The proof that the convergence is in L1 when
µ(X ) † 8 is as in Theorem 22.1 and so we omit it. ⇤
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23.2 Dominated Ergodic Theorem.

Our study of ergodic theorems continues by analysis of integrability of the maximum
function. We start by noting the standard fact we already saw for martingles:

Lemma 23.4 Let f fiÑ f ‹ be a map on measurable functions that is monotone (i.e., f § g
implies f ‹

§ g‹), positive-homogeneous and subadditive (i.e., (a f + bg)‹
§ |a| f ‹ + |b|g‹) and

acts as identity on positive constants (i.e., 1‹ = 1). Suppose that

@l ° 0 @ f P L1 : µ( f ‹
° l) §

C
l

} f }1 (23.30)

holds. Then for each p P (1, 8),

@ f P Lp : } f ‹
}p § 2C1/p

⇣ p
p ´ 1

⌘1/p
} f }p (23.31)

Proof. Assume without loss of generality that f • 0. For l ° 0 set g := f 1t f •l/2u. Then
g § f + l/2 implies g‹

§ f ‹ + l/2. Hence

µ( f ‹
° l) § µ(g‹

° l/2) §
2C
l

ª
gdµ =

2C
l

ª

t f °l/2u
f dµ (23.32)

This gives
ª
( f ‹)pdµ =

ª 8

0
plp´1µ( f ‹

° l)dl

§ 2Cp
ª 8

0
lp´1

✓ª
f 1t f °l/2udµ

◆
dl

= 2Cp
ª ✓ª 8

0
lp´21t f °l/2udl

◆
f dµ =

2Cp
p ´ 1

ª
(2 f )p´1 f dµ

(23.33)

where we used Tonelli’s theorem to swap the order of integration. Now collect the con-
stants to write the right hand side as 2pC p

p´1
≥

f pdµ. ⇤
A natural question is how bad is integrability of f ‹ compared to that of f . The follow-

ing provides a sufficient condition:

Theorem 23.5 (Dominated Ergodic Theorem, Wiener 1939) Assuming the setting of The-
orem 23.1 with µ(X ) † 8, let f ‹ be the maximal function (23.14). Denote

L log L :=
"

f P L1 :
ª

| f | log+ | f |dµ † 8

*
(23.34)

(This is sometimes called the Zygmund class.) Then

f P L log L ñ f ‹
P L1 (23.35)

and so f P L log L implies that the ergodic averages admit an integrable dominating function.
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Proof. Using that µ(X ) † 8 we write
ª

f ‹dµ =
ª 8

0
µ( f ‹

° l)dl

§ 2µ(X ) +
ª 8

2
µ( f ‹

° l)dl

(23.36)

For the integral on the right we invoke the inequality (23.21) to get
ª 8

2
µ( f ‹

° l)dl § 2C
ª 8

2

✓ª
| f |1t| f |°l/2udµ

◆
dl

= 2C
ª ✓ª 8

2
1t| f |°l/2udl

◆
| f |dµ = 2C

ª
| f | log | f | dµ

(23.37)

The integral on the right is bounded by that with log replaced by its positive part. ⇤
Since the convergence of ergodic averages in L1 can be proved directly, the main use

of the above is a sufficient condition for having an integrable function that dominates the
ergodic averages. Note that the statement is generally false when µ(X ) = 8 for if we
had f ‹

P L1, then the convergence in the Spatial Ergodic Theorem would take place in L1

which is generally false in infinite measure spaces. As shown by K. Petersen in 1979, for
continuous analogues of ergodic averages (i.e., expressions of the type 1

T
≥T

0 f ˝ jtdt) the
Maximal Inequality is in fact an equality and the computation above can be reversed to
show that f ‹

P L1 implies f P L log L.
An interesting twist is that all one actually needs is that the maximal function is finite

almost surely. This is a consequence of:

Theorem 23.6 (S. Banach, 1925) Let p P [1, 8] and let (X ,G, µ) be a measure space. Assume
tTnun•1 are bounded linear operators on Lp such that

@ f P Lp : T‹ f := sup
n•1

T f † 8 µ-a.e. (23.38)

Then !
f P Lp : lim

nÑ8 Tn f exists µ-a.e.
)

is closed in Lp (23.39)

The proof uses a reasoning similar to the proof of the Uniform Boundedness Principle
to show that a maximal inequality of sorts holds once T‹ f is finite almost surely for
all f P Lp. We leave the details to an exercise.

23.3 Some other ergodic theorems.

We now state two additional convergence theorems. The first one is concerns with com-
positions of m.p.t.’s that are themselves chosen at random:

Theorem 23.7 (Random Ergodic Theorem, S. Ulam and J. von Neumann 1945) Given a
measure space (X ,G, µ), a measurable space (S, S) and a map j : X ˆ S Ñ X satisfying

(1) for each y P S, the map x fiÑ j(x, y) is a m.p.t. on (X ,G, µ),
(2) (x, y) fiÑ j(x, y) is G b S/G-measurable,
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abbreviate the n-fold composition with second coordinates y0, . . . , yn´1 as

jn(x, y0, . . . , yn´1) := j(¨, yn´1) ˝ ¨ ¨ ¨ ˝ j(¨, y0)(x) (23.40)

For any sequence tYkuk•0 of i.i.d. S-valued random variables on a probability space (W,F , P)
and any f P L1(X ,G, µ),

f̄ := lim
nÑ8

1
n

nÿ

k=1

f ˝ jk(¨, Y0, . . . , Yk´1) exists a.e., P-a.s. (23.41)

Moreover, we have f̄ P L1(X ˆ W,G ˆ F , µ b P).

We remark that, as far as convergence is concerned, it suffices that tYkuk•0 are station-
ary (with respect to the left shift). The proof is a good exercise on the concept of skew
product. We leave the proof to a homework exercise.

Another theorem concerns a subtlety of potentially dealing with uncountably many
null sets when a continuum-valued parameter is involved:

Theorem 23.8 (N. Wiener and A. Wintner, 1941) Let j be a m.p.t. on (X ,G, µ) with
µ(X ) † 8. For all f P L1(µ) there exists a µ-null set N P G such that

@x P X rN @q P R : lim
nÑ8

1
n

n´1ÿ

k=0

e2piqk f ˝ jk(x) exists (23.42)

A key point is that the set N can be chosen uniformly for all q. It is instructive to
first prove convergence in the mean. This goes by constructing a set of functions which
is dense in L1 and for which convergence is verified explicitly. Then we observe that
the maximal function f ‹ dominates the ergodic averages uniformly in q. We leave the
details to a homework exercise.
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