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22. POINTWISE ERGODIC THEOREMS

We now move to the statements which assert that the “time averages” converge point-
wise a.e., not just in a functional-theoretical sense. The first result of this kind is due
to G.D. Birkhoff which (by the date of publication) formally predates J. von Neumann’s
result but, as rumor has it, only because Birkhoff was the editor of the journal where
J. von Neumann submitted his paper:

Theorem 22.1 (Pointwise Ergodic Theorem, Birkhoff 1931) Let (X ,G, µ, j) be a measure-
preserving system with µ(X ) † 8. For all f P L1 there exists f̄ P L1 with

1
n

n´1ÿ

k=0

f ˝ jk
›Ñ
nÑ8 f̄ µ-a.e. & in L1 (22.1)

Moreover, we have f̄ ˝ j = f̄ µ-a.e. and } f̄ }1 § } f }.

The argument relies on proving another, less intuitive but nevertheless interesting,
ergodic theorem which in various versions is due to N. Wiener 1939 and K. Yoshida
and S. Kakutani 1939 for m.p.t.’s and Hopf 1954 for positivity-preserving contractions.
(Birkhoff used a somewhat different argument and, in fact, worked only in the specific
setting of smooth flows on manifolds.)

Theorem 22.2 (Maximal Ergodic Theorem, Hopf 1954) Consider a measure space (X ,G, µ)
and let T be a positivity-preserving contraction on L1. For f P L1 and n • 1 abbreviate
An f := 1

n
∞n´1

k=0 Tk f and denote f ‹ = supn•1 An f . Then
ª

t f ‹°0u
f dµ • 0 (22.2)

Proof. We will follow a slick argument by A. Garsia 1965. (The argument of Wiener
and Yoshida-Kakutani was phrased for m.p.t. a decomposition of the measure space
into pieces on which the identity is proved directly, and then assembling the pieces back
together.) Introduce the following notations

Sn f :=
n´1ÿ

k=0

Tk f and Mn f := max
k§n

Sk f . (22.3)

Note that all these are in L1 provided f is. The positive part of Mn f then satisfies

@k = 1, . . . , n : (Mn f )+ • Sk f (22.4)

which by the positivity-preserving property of T implies

@k = 1, . . . , n : f + T(Mn f )+ • f + TSk f = Sk+1 f (22.5)

As (Mn f )+ • 0 we also have f + T(Mn f )+ • f = S1 f and so

f • Mn f ´ T(Mn f )+ (22.6)
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Now let En = tMn f ° 0u. Then
ª

En

f dµ •

ª

En

⇥
Mn f ´ T(Mn f )+

⇤
dµ

•

ª

En

⇥
(Mn f )+ ´ T(Mn f )+

⇤
dµ

•

ª

W
(Mn f )+dµ ´

ª

W
T(Mn f )+dµ

(22.7)

But h • 0 and h P L1 imply
≥

Thdµ = }Th} § }h} =
≥

hdµ and so the right-hand side of
(22.7) is larger than zero. We conclude

@n • 1 :
ª

En

f dµ • 0 (22.8)

But En increases to t f ‹
° 0u as n Ñ 8 and so we get (22.2) by the Dominated Conver-

gence Theorem. ⇤
We now process the terse-looking inequality (22.2) into a very familiar form:

Corollary 22.3 (Maximal inequality) Suppose A P F be j-invariant, i.e., j´1(A) = A,
and obeys µ(A) † 8. Given f P L1 let f ‹ := supn•1

1
n
∞n´1

k=0 f ˝ jk. Then

@a P R : aµ
�

A X t f ‹
° au

�
§

ª

AXt f ‹°au
f dµ (22.9)

Proof. Let g := ( f ´ a)1A. Then µ(A) † 8 implies g P L1 and the j-invariance of A
gives g‹ = ( f ‹

´ a)1A. Hence tg‹
° 0u = A X t f ‹

° au a.e. and so

0 §

ª

tg‹°0u
gdµ =

ª

AXt f ‹°au
( f ´ a)dµ = ´aµ

�
A X t f ‹

° au
�
+
ª

AXt f ‹°au
f dµ (22.10)

where the last step follows again by µ(A) † 8. ⇤
We note that the requirement that µ(A) † 8 is what will eventually force us to

take µ(X ) † 8 in the proof below. As we will show later, this is not necessary for a.e.
convergence and integrability of the limit, but matters for the rest of the statement. Our
proof below would work if X can be partitioned into countably many finite-measure
invariant sets which, of course, is a fairly unrealistic requirement.
Proof of the Pointwise Ergodic Theorem. Assume µ(X ) † 8, pick a † b and consider
the set

Eab :=
 

lim inf
nÑ8 An f † a † b † lim sup

nÑ8
An f

(
. (22.11)

This set if j-invariant because the limsup and liminf are, i.e., j´1(Eab) = Eab. Since
Eab Ñ t f ‹

° bu, from (22.9) we get

bµ(Eab) §

ª

Eab

f dµ (22.12)
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On the other hand, Eab Ñ t(´ f )˚
° ´au and thus also

(´a)µ(Eab) § ´

ª

Eab

f dµ (22.13)

Combining these we conclude

bµ(Eab) §

ª

Eab

f dµ § aµ(Eab). (22.14)

But a † b and µ(Eab) † 8, so this is possible only if µ(Eab) = 0. It follows that An f
converges pointwise almost everywhere to f̄ := lim supnÑ8 An f .

The definition ensures that f̄ is j-invariant. Fatou’s lemma along with |An f | § An| f |

implies } f̄ }1 § } f }. To show L1-convergence, pick a non-negative f P L1 and let g be a
bounded function with 0 † g † f . Then

}An f ´ f̄ }1 § }An( f ´ g)}1 + }Ang ´ ḡ}1 + } f̄ ´ ḡ}1

§ 2} f ´ g}1 + }Ang ´ ḡ}1,
(22.15)

where we used that An is a contraction to derive the second inequality. For g bounded
we have Ang Ñ ḡ in L1 by the Bounded Convergence Theorem. Then let g Ñ f in L1. ⇤

The above is an argument we used in the proof of Theorem 15.1 for Lévy martin-
gales. Here is another proof that is more in line with what we did for the Mean Ergodic
Theorems earlier:
Another proof of the Pointwise Ergodic Theorem. Assume µ(X ) † 8. The maximal
inequality in Corollary 22.3 applied to any f P L1 then gives

@l ° 0 : µ
�
| f |

‹
° l

�
§

1
l

} f }1 (22.16)

As argued before, limnÑ8 An f exists for all f P L where

L = tg + h ´ Th : h, g P L1, g = g ˝ ju (22.17)

Since L was shown to be dense in L2, which for finite µ is dense in L1, for each f P L1

and each k • 1 there exists fk P L such that } f ´ fk}1 † 4´k. But then (22.16) gives

µ
�
| f ´ fk|

‹
° 2´k�

§ 2´k (22.18)

Using the Borel-Cantelli reasoning we have

µ
�
| f ´ fk|

‹
° 2´k i.o.

�
= 0 (22.19)

On the full-measure set W0 := t| f ´ fk|
‹

° 2´k i.o.uc we have |An f ´ An fk| § 2´k once k
is sufficiently large and so

lim
nÑ8 An fk ´ 2´k

§ lim inf
nÑ8 An f § lim sup

nÑ8
An § lim

nÑ8 An fk + 2´k (22.20)

i.e.,

lim sup
nÑ8

An ´ lim inf
nÑ8 An §

2
k

(22.21)
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In short, limnÑ8 An f exists and (by (22.20)) is finite on W0. The remainder of the proof
is the same and so we will not repeat it. ⇤

For the case of the m.p.s. associated with i.i.d. random variables, the above gives

tXkuk•1 i.i.d. ^ X1 P L1
ñ lim

nÑ8
1
n

nÿ

k=1

Xk exists a.s. & in L1 (22.22)

The Hewitt-Savage Zero-One Law (Theorem 18.6) then implies that the limit must be
constant and so equal to EX1. Hence, Theorem 22.1 gives us yet another way to prove the
SLLN this time using an argument that generalizes rather dramatically to other contexts.
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