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21. MEAN ERGODIC THEOREM

In this section we will establish the existence of “time averages” mentioned in the dis-
cussion of the Boltzmann Ergodic Hypothesis.

21.1 Mean Ergodic Theorems.

The first result we will prove is the the Mean Ergodic Theorem of J. von Neumann. This
result is based on reinterpreting m.p.t.’s as linear operators on Hilbert (or Banach) spaces
via the following observation:

Lemma 21.1 Let (W,F , µ, j) be a measure-preserving system. Then for every p • 1,

T f (x) = f ˝ j(x) (21.1)

defines a linear operator on Lp(W,F , µ) with the following properties:
(1) }T f }p = } f }p (isometry)
(2) T f • 0 if f • 0 (positivity-preserving)

If j is a measure-preserving bimeasurable bijection, then T is unitary on L2(W,F , µ).

Proof. The positivity-preserving property is immediate from (21.1) so we just need to
prove that T is an isometry on Lp. This follows from µ ˝ j´1 = µ via

@t ° 0 : µ
�
| f ˝ j| ° t

�
= µ

�
| f | ° t

�
(21.2)

which gives
ª

|T f |
pdµ =

ª
| f ˝ j|

pdµ =
ª 8

0
ptp´1µ

�
| f ˝ j| ° t

�
dt

=
ª 8

0
ptp´1µ

�
| f | ° t

�
dt =

ª
| f |

pdµ,
(21.3)

via Tonelli’s theorem. Finally, if j is invertible then so is T. An invertible isometry on L2

is a unitary map. ⇤
Note that an isometry is a contraction which (in the lingo of the functional analysis) is

a linear map with }T} § 1. Now comes the first main result:

Theorem 21.2 (Mean Ergodic Theorem, von Neumann 1932) Let T be a contraction on
a Hilbert space H and let P be the orthogonal projection onto the space tg P H : Tg = gu of
T-invariant vectors. Then

@ f P H :
1
n

n´1ÿ

k=0

Tk f ›Ñ
nÑ8 P f . (21.4)

The proof hinges on the following observation:

Lemma 21.3 Suppose T is a contraction on a (real or complex) Hilbert space H and let T+ be
its adjoint. Then

Ker(1 ´ T) = Ker(1 ´ T+) (21.5)
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Proof. We first claim that

@g P H : Tg = g ô (g, Tg) = }g}
2 (21.6)

Noting that the implication ñ is trivial, we focus on . Assume g obeys (g, Tg) = }g}
2.

A calculation then shows

}Tg ´ g}
2 = }Tg}

2 + }g}
2

´ 2Re(Tg, g) = }Tg}
2

´ }g}
2 (21.7)

Since T is a contraction, }Tg}
2

§ }g}
2 and so }Tg ´ g}

2
§ 0. Hence Tg = g.

The equivalence (21.6) suffices for the claim. Indeed, g P Ker(1 ´ T) means Tg =
g and so }g}

2 = (g, Tg) = (T+g, g) by (21.6). Taking complex conjugate then gives
(g, T+g) = }g}

2 and so T+g = g and thus g P Ker(1 ´ T+) by (21.6) again. This proves
Ker(1 ´ T) Ñ Ker(1 ´ T+); the other inclusion follows by (T+)+ = T. ⇤

Proof of the Mean Ergodic Theorem. Abbreviate An = 1
n
∞n´1

k=0 Tk and recall that for any
bounded linear operator A on a Hilbert space, Ker(A) = Ran(A+)K. In light of the
previous lemma,

Ker(I ´ T) = Ker(I ´ T+) = Ran(I ´ T)K (21.8)

Hence we get
H = Ker(I ´ T) ‘ Ran(I ´ T) (21.9)

or, more explicitly,

H =
 

g + (h ´ Th) : g, h P H, Tg = g
(

(21.10)

Now pick f = g + h ´ Th where Tg = g. Then

An f =
1
n

n´1ÿ

k=0

Tk f = g +
1
n

"n´1ÿ

k=0

Tkh ´

nÿ

k=1

Tkh
*
= g +

1
n
(h ´ Tnh) (21.11)

But }h ´ Tnh} § 2}h} and so An f Ñ g as n Ñ 8. Since g = P f , we get An f Ñ P f for a
dense set of f ’s. However, both An and P are contractions and so a 3e-argument proves
that An f Ñ P f for all f P H. ⇤

The above approximation argument sits, in one or another way, at the core of many
convergence results in ergodic theory, differentiation theory, etc. The point is that the
convergence is easy to check on a large class of functions and one only needs a suitable
continuity argument to extend it to all the functions of interest. To demonstrate this one
more time, we prove a similar Mean Ergodic Theorem in any Lp with 1 † p † 8:

Theorem 21.4 (Mean Ergodic Theorem for contractions) Let B be a reflexive Banach space
(e.g., B = Lp for 1 † p † 8) and let T be a contraction on B (i.e., a linear map with }T f } §

} f }). Then there exists a linear map P : B Ñ B such that

@ f P B :
1
n

n´1ÿ

k=0

Tk f ›Ñ
nÑ8 P f (21.12)

Moreover, P2 = P and }P} § 1.
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Proof. Using the argument (21.11), it suffices to show that the set

L = tg + h ´ Th : h, g P X , Tg = gu (21.13)

is dense in X . Suppose L ‰ B. By the Hahn-Banach theorem, there exists a vector ` P B

and a linear functional f P B
˚ such that

f(L ) = t0u ^ f(`) ‰ 0 (21.14)

Using T˚ to denote the adjoint of T, the fact that f(h ´ Th) = 0 for all h P X implies
f = T˚f; i.e., f P Ker(1 ´ T˚). But then f(`) = T˚f(`) = f(T`) and, recursively,
f(`) = f(An`) where An := 1

n (T
0 + ¨ ¨ ¨+ Tn´1). Since B is reflexive, the Banach-Alaoglu

Theorem tells us that the unit ball in B is weakly compact. From }An`} § }`} we thus
conclude the existence of a subsequence nk Ñ 8 such that Ank` converges weakly to
some element g; i.e.,

@y P B
˚ : y(Ank`) ›Ñ

kÑ8
y(g) (21.15)

But then also

@y P B
˚ : y(TAnk`) = T˚y(Ank`) ›Ñ

kÑ8
T˚y(g) = y(Tg) (21.16)

and }Ang ´ TAng} §
1
n }g ´ Tng} Ñ 0 thus gives y(Tg) = y(g) for all y P B

˚ and
so g = Tg. But f(`) = f(An`) gives f(g) = f(`) ‰ 0 in contradiction with the fact
that f annihilates L .

With the convergence established, we define P by P f := limnÑ8 An f . Then P is linear
and, since }An} § 1, obeys }P}1. Using }An f ´ TAn f } Ñ 0 we also conclude TP = P.
Hence also AnP = P and, taking the limit, P2 = P as desired. ⇤

21.2 Weil’s equidistribution theorem.

Here are some examples which demonstrate why the previous theorem fails for L1

and L8 (which are generally not reflexive):
‚ p = 1: Set B := L1(R,B(R), µ) with µ := Lebesgue measure and T := f ˝ j for

j(x) = x + 1 and f = 1[0,1). Then An f = 1
n1[0,n) which is not Cauchy in L1.

‚ p = 8: Set B = L8([0, 1),B([0, 1)), µ) with µ := Lebesgue measure, j(x) = x + a
mod 1 with a R Q. We now construct a function for which L8-convergence fails.
Define txkuk•0 by x0 := 0 and, recursively, xk+1 := xk ´ a mod 1. Using the periodic
structure, abbreviate B(x, r) := ty P [0, 1) : mint|x ´ y|, |1 + x ´ y|u † ru. Let

F :=
§

k•0

B(xk, 2´k´3) (21.17)

and observe that

µ(F) §

ÿ

k•0

µ
�

B(xk, 2´k´3)
�
=

ÿ

k•0

2 ¨ 2´k´3 =
1
2

(21.18)

The construction ensures that B(xk, 2´n´3) Ñ F whenever k § n and so

@k § n : Fc
X j´k�B(0, 2´n´3)

�
= Fc

X B(xk, 2´n´3) = 0 (21.19)
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showing that 1Fc ˝ jk = 0 on B(0, 2´n´3) for k § n and thus An1Fc = 0 on B(0, 2´n´3).
If An1Fc converged in L8, Theorem 21.5 below would identify the limit to be the
constant

≥
1Fcdµ = µ(Fc); i.e., An1Fc Ñ µ(Fc) in L8. But µ(B(0, 2´n´3)) ° 0 gives

}An1Fc ´ µ(Fc)}8 • µ(Fc) ° 0, making L8-convergence impossible.
As we will see after we prove Birkhoff’s Pointwise Ergodic Theorem, for finite measure
spaces the theorem is still correct in L1 and the convergence does hold pointwise a.e.,
just not uniformly a.e.

In the case of irrational rotations of the unit circle, the above results can be proved
and even strengthened by invoking Fourier series representation:

Theorem 21.5 (Weil’s Equidistribution Theorem) Let a R Q and ja(x) = x + a mod 1.
(1) If f measurable with f ˝ ja = f a.e. then f is a constant a.e.
(2) For all f P L2([0, 1]),

1
n

n´1ÿ

k=0

f ˝ jk
a

L2
›Ñ
nÑ8

ª 1

0
f (x)dx (21.20)

The convergence is uniform if f is 1-periodic and the class C2(R).
(3) If f is Riemann integrable, then the convergence occurs uniformly on [0, 1].

Proof. (1) Suppose f is measurable with f ˝ j = f a.e. Then for each t P R, gt := 1t f §tu
obeys gt ˝ ja = gt a.e. Since gt is bounded and measurable, its Fourier coefficients obey

ĝt(n) :=
ª 1

0
gt(x)e2pinxdx =

ª 1

0
gt(x)e2pin(x´a)dx = e´2pina ĝt(n) (21.21)

As a R Q, this only possible if ĝt(n) = 0 for all n P Z r t0u. Since g equals its Fourier
representation

∞
nPZ cne2pinx for a.e. x, we get that gt is constant a.e. But this can only

hold for all t P R if f is constant a.e.
(2) Let f P C2(R) with f (x + 1) = f (x) for all x P R. Then f admits a uniformly

convergent Fourier representation

@x P R : f (x) =
ÿ

nPZ

cne2pinx (21.22)

where cn :=
≥1

0 f (x)e´2pinxdx are such that
∞

nPZ |cn| † 8. This allows us to write

An f (x) =
1
N

N´1ÿ

k=0

f ˝ ja(x) =
ÿ

nPZ

cn

✓ N´1ÿ

k=0

(e2pina)k
◆

e2pinx (21.23)

But

1
N

N´1ÿ

k=0

(e2pina)k =

$
’&

’%

1
N

1 ´ e2piNna

1 ´ e2pina
›Ñ

NÑ8
0, if n ‰ 0

1, if n = 0
(21.24)

and so An f (x) Ñ c0 uniformly for any 1-periodic f P C2(R). But such f ’s are dense
in L2 and since the An’s are contractions in L2, same is true, albeit only in the sense
of L2-convergence, for all f P L2.
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(3) For each Riemann integrable function f : [0, 1] Ñ R and each e ° 0, there exist step
functions g and h of the form

∞n
j=1 cj1[aj,bj] such that g § f § h and

ª 1

0
( f ´ g)dx † e and

ª 1

0
(h ´ f )dx † e (21.25)

Since Ang § An f § Anh, it suffices to prove the claim for step functions and, by linearity,
for functions of the form 1[a,b]. But then we can find C2-functions g̃, h̃ : [0, 1] Ñ R+ such
that g̃ § 1[a,b] § h̃ and

ª 1

0
(1[a,b] ´ g̃)dx † e and

ª 1

0
(h̃ ´ 1[a,b])dx † e (21.26)

The argument in (2) shows that Ang̃(x) Ñ
≥1

0 g̃dz and Anh̃(x) Ñ
≥1

0 h̃dz uniformly in x P

[0, 1]. It follows that An f Ñ
≥1

0 f dz uniformly on [0, 1]. ⇤
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