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20. ORIGINS AND SETUP OF ERGODIC THEORY

In the remaining lectures this quarter, we will move attention to the subject of Ergodic
Theory. We will start with motivational remarks on the origins of this theory that go
back to the work of L. Boltzmann in statistical mechanics.

20.1 Hamiltonian flow and Boltzmann’s ergodic hypothesis.

In mid-to-late 17th century, I. Newton cast the laws of classical mechanics in the form of
second order differential equations for functions describing motion of physical objects
in time. A key concept was that of a force which, however, is loosely defined and, in fact,
can largely be given a meaning only through Newton’s laws themselves. The only kind
of force in Newton’s theory that is not of such “kinematic type” is the force of gravity.
This force is also of a potential form, meaning that the gravitational pull exerted by a
celestial body on an object of a unit mass is a gradient of a potential function. (Another
such force is the electrostatic force, but that had not yet been discovered.)

For objects interacting via potential forces, in 1833 W.R. Hamilton re-cast Newton’s
laws (reformulated earlier via variational calculus by J.L. Lagrange) in terms of first-
order differential equations for two kinds of quantities:

‚ positions (q1, . . . , qn)
‚ momenta (p1, . . . , pn)

Here, typically, n = 3N where N is a number of, say, gas particles in a container. In
this interpretation (q3i, q3i+1, q3i+2) are the Cartesian coordinates and (p3i, p3i+1, p3i+2)
are the coordinates of the velocity of the i-th particle multiplied by its mass. The time
evolution of such a system is then a trajectory in R2n.

For a general class of system with potential forces, the evolution is determined by
Hamilton’s equations: We assume that there exists a continuously differentiable func-
tion H : R2n

Ñ R such that q1(t), . . . , qn(t) and p1(t), . . . , pn(t) obey the ODEs

@k = 1, . . . , n :
dqk
dt

=
BH
Bpk

^
dpk
dt

= ´
BH
Bqk

(20.1)

A typical example of the Hamiltonian H is the function

H(q, p) :=
nÿ

i=1

p2
i

2
+ V(q1, . . . , qn) (20.2)

The two terms on the right represent the kinetic energy and potential energy.
Under the assumption that H P C2(R2n), a solution

x(t) := (q1(t), . . . , qn(t), p1(t), . . . , pk(t)) (20.3)

to (20.1) with initial condition x(0) = (q1(0), . . . , qn(0), p1(0), . . . , pn(0)) is locally unique
(meaning that the map x(0) fiÑ x(t) is injective in a neighborhood of x(0) for t sufficiently
small). We thus have a one-parameter family of maps Tt : R2n

Ñ R2n defined by

Tt
�
x(0)

�
= x(t) (20.4)

We refer to this family as the Hamiltonian flow. Here is a key observation:
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Theorem 20.1 (Liouville’s theorem) Tt preserves the Lebesgue measure on R2n.

Proof. This is a beautiful exercise in multivariable calculus. It suffices to show that the
Jacobian Jt of the transformation Tt

Jt(x(0)) = det
!

Bxi(t)
Bxj(0)

)n

i,j=1
. (20.5)

equals 1 at all t. Moreover, because x(t) is a solution to the above equations, the Jacobian
has the following semigroup property:

Jt+d(x) = Jt(x)Jd(x(t)). (20.6)

It thus suffices to show that B
Bt Jt(x) = 0 at t = 0 and all x. To this end we note that

xi(t) = xi(0) + tVi(x(0)) + o(t) where V is the vector field

V(x) =
⇣

BH
Bp1

, . . . ,
BH
Bpn

, ´
BH
Bq1

, . . . , ´
BH
Bqn

⌘
. (20.7)

Therefore, Bxi(t)
xj(0)

= dij + t BVi
Bxj

(x(0)) + o(t) and so

Jt(x) = det
�
dij + t(rV)ij(x) + o(t)

�
. (20.8)

But det(1+ tA) = 1 + tTrA + o(t) and Tr(rV) = r ¨ V which vanishes by equality of
second mixed partials. Hence Jt = 1 + o(t), i.e., B

Bt Jt vanishes at t = 0. ⇤
Just as Newtonian mechanics, the Hamiltonian mechanics is reversible — solving the

equations backwards allows us to recover the initial configuration from the present state.
This, however, does not quite match the observation that many processes in the world
are quite apparently irreversible. Moreover, the systems of physical interest — say, the
gas particles in a container — typically have an extremely large number of constituents
and, as later P.T. Ehrenfest interpreted L. Boltzmann’s ideas, a typical trajectory of such
systems winds around rapidly filling all “corners” of the configuration space. In order
to make this consistent with earlier conclusions about “distribution of velocities” made
by J.C. Maxwell, the following conjecture was made:

Conjecture 20.2 (Boltzmann’s Ergodic Hypothesis) The time averages

1
T

ª T

0
f (qt, pt)dt (20.9)

can be replaced, in the limit T Ñ 8, by space averages
ª

f (q, p)µ(dqdp) (20.10)

for a suitable (invariant) measure.

The departure from the trajectory point of view of classical mechanics gave birth to
statistical mechanics (which is a physical theory that regards the state of the system as a
random variable or a measure). However, it was soon realized (and excessively debated)
that the conjecture has at least two intrinsic problems:
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(1) The existence of the limit (20.9) is a priori unclear, especially once we learn (as we
will soon do) that the system keeps coming back to the vicinity of its initial state.

(2) The invariant measure is generally not unique. The problem is inherent to the def-
inition of the Hamiltonian flow. Indeed, the Hamiltonian H is constant along the
trajectories of the system. To see this, let F P C2(Rn). Plugging in the solution x(t)
into F we now compute its (total) derivative with respect to t to be

dF
dt

=
ÿ

i

⇣
BF
Bqi

dqi
dt

+
BF
Bpi

dpi
dt

⌘
= tF, Hu (20.11)

where

tA, Bu :=
ÿ

i

⇣
BA
Bqi

BB
Bpi

´
BA
Bpi

BB
Bqi

⌘
(20.12)

is the so called Poisson bracket. Since tF, Hu = ´tH, Fu, we get

dH
dt

= tH, Hu = 0 (20.13)

The flow will thus not leave the set tH = Eu, where E is the value of H at time zero.
By a compactness argument, if H has compact level sets, for each E there will be a
invariant probability measure concentrated on tH = Eu. (Other “conservation laws”
may complicate this further.)

While the full proof of the Ergodic Hypothesis is still elusive, intensive work by math-
ematicians in the first half of the 20th century shed much new light into the problem.
Indeed, now we know that the limit of the time averages exists under very general
circumstances and that the hard part of the problem is thus the classification of “irre-
ducible” invariant measures.

20.2 Measure preserving transformations.

We will now move back to mathematics and start developing the foundations of the
ergodic theory. In light of Liouville’s theorem, much of the theory deals with transfor-
mations of measure spaces that preserve the underlying measure.

Definition 20.3 (Measure preserving transformation) Given a measure space (X ,G, µ),
a map j : X Ñ X is a measure-preserving transformation, to be abbreviated m.p.t., if j
is G-measurable (j´1(G) Ñ G) and preserves µ (i.e., µ ˝ j´1 = µ).

The object (X ,G, µ, j), where j is an m.p.t. on (X ,G, µ), will sometimes be called a
measure preserving system, to be abbreviated m.p.s. If j is invertible and both j and j´1

are m.p.t.’s, we call j a measure-preserving bijection.
Our first examples of measure-preserving systems arise from stationary sequences of

random variables defined in:

Definition 20.4 A sequence (Xn)n•0 of random variables on (W,F , P) is said to be

stationary if for all k, n • 0, (Xk, . . . , Xk+n) has the same law as (X0, . . . , Xn). A similar

definition applies to two-sided sequences (Xn)nPZ.
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Here is the precise sense in which stationary sequences can be interpreted as measure-
preserving transformations:

Lemma 20.5 Let tXnunPN be a stationary sequence on (W,F , P) taking values in a standard-
Borel space S . Let q denote the left shift on S

Z defined by

q
�
txnunPZ

�
:= q

�
txn+1unPZ

�
(20.14)

There exists a unique probability measure µ on (SN,B(SN)) and there exists a measurable map
X : SN

Ñ S such that
µ ˝ q´1 = µ (20.15)

and
tXnunPN

law
= tX ˝ qn

unPN (20.16)

In particular, every one-sided stationary sequence of random variables taking values in a standard
Borel space is a restriction of a two-sided stationary sequence.

Proof. Abbreviate [´n, n] := t´n, . . . , nu and define µn on (S [´n,n],B(S [´n,n])) by

µn(A) := P
�
(X1, . . . , X2n+1) P A

�
, A P S

[´n,n] (20.17)

By stationarity of tXnun•0, the measures tµnun•0 are consistent and so, by the Kol-
mogorov Extension Theorem, they are restrictions of a unique probability measure on
(SZ,B(SZ)). The left-shift q is continuous in product topology and hence measur-
able; same applies to its inverse, the right-shift. By stationarity, µ ˝ q´1(A) = µ(A)
for all cylinder sets which by Dynkin’s p-l Theorem extends to all A P B(SZ). Finally,
consider the random variable X(w) = w0. The construction implies that (X, X ˝ q, X ˝

q2, . . . , X ˝ qn)(w) = (w0, . . . , wn) has the same law as (X0, . . . , Xn), for all n • 0, proving
(20.16) by Dynkin’s p/l-theorem. ⇤

Let us now give some examples of measure preserving systems arising from station-
ary sequences of random variables.

Example 20.6 tXnun•0 i.i.d. The special case of Xn taking a finite number of values,
most typically, Xn P t0, 1u, is referred to as Bernoulli shift.

Example 20.7 tXnun•0 stationary Markov chain; i.e., the chain started from a stationary
measure. (We will discuss these in 275C.)

Example 20.8 tXnunPZ stationary Gaussian. Let µ P R and let F : Z Ñ R be a function
of the form

F(x) =
1

2p

ª p

´p
F̂(k)eikxdk (20.18)

where F̂ is non-negative and integrable. Let tXnunPZ be Gaussian with mean µ and
covariance C(x, y) = F(x ´ y). Then tXnunPZ is stationary with respect to left shifts and
thus defines a measure preserving system as specified above.

Next let us discuss examples that do not obviously come from a random sequence:
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Example 20.9 (Rotation of a circle) Here X = [0, 1) which we think of as a circle, µ
is Lebesgue measure and j(x) := x + a mod 1 for some fixed a. (The most interesting
cases will arise from a R Q.) As it turns out, j preserves the Lebesgue measure. Using
the Minkowski notation a + B := ta + b : b P Bu along with the fact that a + B and B
have the same Lebesgue measure, this is seen from

j´1(A) =
⇣

´a +
�

A X [a, 1)
�⌘

Y

⇣
1 ´ a + A Y [0, a)

⌘
(20.19)

and noting that the union is disjoint.

Example 20.10 (Continued fractions) Here X = [0, 1]r Q. Each x P X is in one-to-
one correspondence with an infinite sequence (a1, a2, . . . ) of positive naturals via the
continued-fraction expansion

x =
1

a1 +
1

a2 + 1
a3+...

. (20.20)

Since a1 = t1/xu and ak+1 = t1/xku where, inductively, xk+1 = 1/xk ´ ak, the sequence never
“terminates,” i.e., ak • 1 for all k. The left shift (a1, a2, . . . ) fiÑ (a2, a3, . . . ) is then pulled
onto onto X as

j(x) := x´1
´ tx´1u (20.21)

It turns out that j is measurable and preserves the measure µ(dx) := 1X (x) dx
1+x dx. This

is because

Lemma 20.11 Let X be sampled from the distribution µ̃(dx) := 1
log 2 1[0,1]rQ(x) dx

1+x dx and
let Z1, Z2, . . . be the unique positive integers such that

X =
1

Z1 +
1

Z2 + 1
Z3+...

(20.22)

Then tZkuk•1 are i.i.d.

We leave the proof of this to a homework exercise.

Example 20.12 (Baker’s transform) Let X := [0, 1) ˆ [0, 1) and let j : X Ñ X be
defined by

j(x, y) =

#
(2x, 1

2 y), if 0 § x † 1/2,
(2x ´ 1, 1

2 (y + 1)), if 1/2 § x † 1.
(20.23)

This transformation deforms the left half of the 1 ˆ 1-square onto its bottom half and its
right half onto its top half. (The name arises from this resembling the move bakers mix
bread dough, except that the top half is not cut an stacked up but rather flipped over.)
Since the transformation scales x coordinate up by the same number as it scales the y
coordinate down, it preserves the Lebesgue measure on X .

Further reading: Durrett, Chapter 6.1
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