
1 MATH 275B notes

1. REVIEW OF 275A MATERIAL: FOUNDATIONS

We begin by a brief review of the important topics treated in MATH 275A, starting with
the foundations and going all the way up to and including independence. Further topics
from 275A will be reviewed in the next lecture.

1.1 The Kolmogorov model.

Probability theory has long existed outside mathematics, lacking a proper foundation
and axiomatics. This was mended in 1933 by A.N. Kolmogorov, who embedded proba-
bility into measure theory. We will follow this approach while noting that it only covers
certain uses of probability. Indeed, the Kolmogorov model does not include the proba-
bilistic framework needed to interpret measurements of non-commutative observables
in quantum theory. Various interpretations and models of probability also arise in phi-
losophy and logic but we will not go into these as they do not really have much bearing
on what we want to do in mathematics.

The Kolmogorov model of probability is phrased in terms of the following concept:

Definition 1.1 A probability space is a triplet (W,F , P) with the following structure:

‚ W is a non-empty set

‚ F is a s-algebra of subsets of W
‚ P is a probability measure on (W,F )

The interpretation of W is the set of “possible outcomes” of a random experiment. The
sets in F are referred to as events; these represent the questions we are allowed to ask
about the outcomes. We interpret P(A) as the likelihood, odds, relative chance or, tech-
nically, probability that event A occurs.

The requirement that P is a measure means that it is a map P : F Ñ [0, 8] which is
countably additive on disjoint unions of events and obeys P(H) = 0. To make it into a
probability measure we need that P(W) = 1, reflecting on W containing the totality of
all possible outcomes and P being interpreted as the relative chance. The assumption of
finite additivity is actually very reasonable given the interpretation of P as a likelihood.
Boosting this to countable additivity is mainly a technical requirement that enables pow-
erful tools from mathematical analysis and, in particular, measure theory. Hardly any
limit results would be available in probability without countable additivity.

An important concept in intuitive probability is that of a random variable which in
its basic form refers to a random numerical value that is somehow associated with the
random experiment. In the Kolmogorov model, this is realized by a map X : W fiÑ R

such that

@I Ñ R interval : X´1(I) P F (1.1)

One then uses the notation

P(X P B) := P(X´1(B)) (1.2)

to denote the probability that “X outputs a result in a set B.” While this is a priori defined
only for B being an interval, a standard argument from measure theory shows that X
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obeying (1.1) is automatically measurable, which means that X´1(B) P F for all sets B in
the least s-algebra containing all the intervals, to be called the Borel s-algebra B(R).

Since composition of measurable functions is measurable, with X an R-valued ran-
dom variable and f : R Ñ R a Borel measurable function, also f (X) is random variable.
This being said, random variables need not be just real-valued; indeed, the same concept
works in more generality. We thus set:

Definition 1.2 Given a measurable space (S, S), an S-valued random variable is a map

X : W Ñ S such that X´1(B) P F for each B P S.

The simplest non-trivial example of the more general setting is S := Rn, in which case
we refer to X as a random vector, but one can take S to be a set of sequences, functions,
operators, measures, etc, provided one can endow these sets with a structure of a mea-
surable space. This is often done with the help of topology, in which case we take S to
be the Borel sets B(S) induced by a conveniently chosen topology on S.

An important, albeit mainly conventional, aspect of working in the Kolmogorov model
is that, while a probability space is always assumed to be there, its particulars should not
be relevant for the mathematical conclusions. Modulo notable exceptions such as theory
building, probabilists therefore suppress references to the probability space altogether
implying, tacitly, that whatever is chosen should work.

1.2 Measure theoretical tools.

A distinctive feature of the probabilistic approach (compared to, say, that of analysis)
is that both the s-algebra and the probability measure are variable parameters of the
problem. This creates a need for efficient tools to construct rather general probability
measures on rather general measurable spaces. Our next topic are the statements from
measure theory that are typically invoked for this purpose.

Throughout we assume that W is a non-empty set and write P(W) for the powerset
of W; i.e., the set of all subsets of W. We start with:

Definition 1.3 A Ñ P(W) is an algebra if

‚ H, W P A, and

‚ A is closed under finite unions and complements (and thus finite intersections

and set differences)

Writing s(A) for the smallest (subset of P(W) that is) s-algebra containing A, a key
measure-extension theorem is then:

Theorem 1.4 (Hahn-Kolmogorov) Let A Ñ W be an algebra and assume µ : A Ñ [0, 8] is
‚ finitely additive on A,
‚ countably subadditive on A

Then µ is the restriction to A of a measure on s(A). This measure is unique if µ is finite (or even
just s-finite) on A.

Since A is generally not closed under countable unions, the requirement of count-
able additivity is limited to disjoint collections of sets from A whose union lies in A.
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The conditions are thus minimal in the sense that they only prevent that P contains a
contradiction to additivity or countable additivity already on A.

The Hahn-Kolmogorov applies even when A is replaced by smaller collections of sets;
notably, a so-called semialgebra:

Definition 1.5 S Ñ P(W) is a semialgebra if

‚ H, W P S

‚ @A, B P S : A X B P S

‚ @A P S DB1, . . . , Bn P S disjoint : Ac =
în

i=1 Bi

Since semialgebras are not generally closed even under finite unions, both finite and
countable additivity is then restricted to disjoint unions that themselves lie in S .

The salient examples of semi-algebras include the set of half-open intervals

t(a, b] : a † bu (1.3)

in R or the set of measurable rectangles

tA ˆ B : A, B P Su (1.4)

in S2, for (S, S) a measurable space. The point here is that the underlying measure is
often defined very canonically on the elements of the semi-algebra, e.g.,

µ
�
(a, b]

�
:= F(b) ´ F(a) (1.5)

as used heavily in the construction of Radon measures on R, or

µ(A ˆ B) := µ1(A)µ2(B), (1.6)

as used in the construction of the product measure µ := µ1 b µ2.
The existence part of the Hahn-Kolmogorov theorem is a consequence of the beautiful

Carathéodory Extension Theorem that is a main tool in abstract measure theory. We refer
the reader to the relevant textbooks for the statement and proof.

In order to explain where the uniqueness part of the Hahn-Kolmogorov theorem
comes from, we introduce the following concepts:

Definition 1.6 P Ñ P(W) is a p-system if @A, B P P : A X B P P

Definition 1.7 L Ñ P(W) is a l-system if

‚ H, W P L

‚ @A, B P L : A Ñ B ñ B r A P L

‚ @tAnun•1 Ñ L : An Ò A ñ A P L

Examples of p-systems are semi-algebras (and thus algebras and s-algebras. Exam-
ples of l-systems include any s-algebra on W and, more importantly,

 
A P F : µ(A) = n(A)

(
for µ, n finite measures on (W,F ) (1.7)

We then need a beautiful, albeit formal and somewhat unintuitive observation:

Theorem 1.8 (Dynkin’s p/l-theorem) If P is p-system and L is l-system, then

P Ñ L ñ s(P) Ñ L (1.8)
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Hence we get that if two finite measures agree on a semi-algebra S , which is a p-
system, then by (1.7) they agree on a l-system that includes s(S). Alternative ap-
proaches to such questions can be based on the Monotone class theorem for sets but
going via Theorem 1.8 is usually more efficient.

1.3 Integration and expectation.

A notable benefit of the Kolmogorov model is the availability of the Lebesgue integra-
tion theory. Recall that the Lebesgue integral over a general measure space (W,F , µ) is
defined in three stages.

‚ Integral of simple functions: For any n • 1, A1, . . . , An P F and a1, . . . , an P R,

j =
nÿ

i=1

ai1Ai fiÑ

ª
j dµ :=

nÿ

i=1

aiµ(Ai) (1.9)

where (as one has to check using finite additivity of µ) the sum on the right does not
depend on the representation of j.

‚ Unsigned integral: For any f : W Ñ [0, 8],
ª

f dµ := sup
"ª

j dµ : 0 § j § f simple
*

(1.10)

where the supremum lies in [0, 8] due to j := 0 being simple.
‚ Signed integral: For any f+, f´ : W Ñ [0, 8],

f = f+ ´ f ´
fiÑ

ª
f dµ :=

ª
f+dµ ´

ª
f ´dµ (1.11)

whenever the expression on the right is not of the type 8 ´ 8.
While these steps assign a numerical value to (most) f : R Ñ [´8, 8], one has to re-
strict f further to get a reasonably behaved object. This is the content of:

Lemma 1.9 When restricted to the class of Borel measurable functions f : W Ñ R, the map
f fiÑ

≥
f dµ is additive and homogeneous.

Note that, since infinite value of the integral is allowed, the integral may exist (i.e., is
well defined as a signed integral above) and yet be divergent. While we worked with
real-valued functions, the Bochner integral provides the corresponding extension for f
taking values in a Banach space but this will not be needed in this course.

A great feature of the Lebesgue integration theory (as opposed to other theories) is
the behavior of the integral under pointwise limits. We summarize these in:

Theorem 1.10 Let (X ,G, µ) be a measure space with µ not necessarily finite and let t fnun•1
and f be real-valued measurable functions on X such that fn Ñ f pointwise and

≥
fndµ exists

for all n • 1. Then
≥

f dµ exists and
ª

fndµ ›Ñ
nÑ8

ª
f dµ (1.12)

holds under any of the following three conditions:
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‚ (Bounded Convergence Theorem) µ is finite and t fnun•1 are uniformly bounded,
‚ (Monotone Convergence Theorem) t fnun•1 are non-negative and pointwise non-decreasing,
‚ (Dominated Convergence Theorem) there exists a measurable function g : X Ñ [0, 8)

with
≥

gdµ † 8 and | fn| § g for all n • 1.

Moving back to probability, we introduce the corresponding name and notation for
the Lebesgue integral:

Definition 1.11 (Expectation) Given a real-valued random variable X, its expectation
is defined by

EX :=
ª

XdP (1.13)

provided the integral exists.

We say that X has finite expectation if E|X| † 8. (This makes sense for all X as an
unsigned integral.) A problem with the above definition is its reliance on the probability
space whose particulars, as we noted above, should not be of much relevance. For this
we introduce:

Definition 1.12 Let (S, S) be a measurable space. Given an S-valued random vari-

able X, its distribution is a measure on (S, S) such that

@B P S : µX(B) := P(X P B) (1.14)

For real-valued X, the distribution µX is thus a Borel probability measure on R. This
measure is related to the cumulative distribution function (CDF)

F(x) := P(X § x) (1.15)

of X via (1.5). Using this measure we then get:

Theorem 1.13 (Change of variables formula) Let (S, S) be a measurable space and X an
S-valued random variable. Then for any Borel measurable f : S Ñ R,

E f (X) =
ª

f dµX (1.16)

whenever one of (and thus both) integrals exist(s).

The proof of this goes by checking this for simple functions and then invoking the
Monotone Class Theorem for functions to extend it to general measurable f . Note that,
for real-valued X, the integral is now over R.

We now quickly introduce some standard concepts:

Definition 1.14 For any a P R and any random variable X, we call E(|X|
a) the a-th

absolute moment of X. If X • 0 we talk about a-th moment.

Note that, by Jensen’s inequality,

 
a P R : E(|X|

a) † 8
(
= interval containing 0 (1.17)

This naturally leads to Lp-spaces of random variables defined by

Preliminary version (subject to change anytime!) Typeset: April 7, 2025



MATH 275B notes 6

Lp = Lp(W,F , P) :=
 

X : random variable ^ E(|X|
p) † 8

(
. (1.18)

A convenient fact (due to P being a finite measure) is that p fiÑ Lp is non-increasing
under set inclusion (and the spaces are thus nested). We also put forward:

Definition 1.15 For X P L2
, we define the variance of X by

Var(X) := E
�
(X ´ EX)2� = E(X2) ´ (EX)2 (1.19)

While EX is a (possibly poor) way to express where the distribution of X is centered,
Var(X) tells us about how much the distribution spreads around EX. Other important
expectations include the characteristic function jX(t) := EeitX and the moment gener-
ating function MX(t) := EetX. We will return to these when these become relevant.

We conclude the discussion of integration by recalling the names labeling some key
inequalities: Cauchy, Hölder, Minkowski, Jensen, Markov, Chebyshev. The reader will
surely be able to find the statements of these in the relevant literature.

1.4 Independence.

A very important notion in probability is that of independence. Proceeding using the
standard route taken in most textbooks, we start by introducing a special case:

Definition 1.16 (Pairwise independence)

A, B P F are independent if P(A X B) = P(A)P(B) (1.20)

The idea behind the name is, using P(A|B) := P(A X B)/P(B) (which assumes that
P(B) ° 0) to denote the conditional probability of A given that B occurs, under inde-
pendence we have P(A|B) = P(A). The interpretation is that, under independence,
no statistical information about A can be inferred from the knowledge that B has oc-
curred. The notion is clearly symmetrical, i.e., if A, B independent then so are B, A, and
it extends to complements: Ac, B are independent, Ac, Bc are independent, etc.

The problem with pairwise independence is that it does not make it clear how to
extend it to more than two events. This is the content of:

Definition 1.17 (Independence) Let (W,F , P) be a probability space and let I be a non-

empty set. We then say:

‚ Events tAauaPI are independent if

@J Ñ I finite : P
⇣£

aPJ
Aa

⌘
=

π

aPJ
P(Aa) (1.21)

‚ Random variables tXauaPI are independent if

@tBauaPI P B(R)I : events
 

tXa P Bau
(

aPI are independent (1.22)

‚ Families of events tCauaPI are independent if

@tAauaPI P F
I :
⇣

@a P I : Aa P Ca

⌘
ñ tAauaPI independent (1.23)
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Note that, in particular, in order to check that three events A, B and C are indepen-
dent, besides their pairwise independence we also have to check that P(A X B X C) =
P(A)P(B)P(C). There is a standard example that shows that one can have three pairwise
independent events that are not independent.

A typical example of tCauaPI in (1.23) is a family of s-algebras. Note that we only
require checking (1.21) for finite J. This is because the expression is then trivially true
for J countable and (possibly) meaningless for J uncountable.

Note that if X1, . . . , Xn are random variables, then the random vector

X := (X1, . . . , Xn) (1.24)

defines a measurable map W Ñ Rn — with measurability on Rn now with respect to the
Borel s-algebra s(Rn) := s(tO Ñ Rn : openu). We then define the joint distribution of
(X1, . . . , Xn) as the distribution of X, i.e.,

µX(B) := P
�
(X1, . . . , Xn) P B

�
(1.25)

Since each Xi is a real-valued random variable, it also induces its distribution µXi on R

which, in this context, is referred to as the i-th marginal of µX. We then have

Lemma 1.18
X1, . . . , Xn independent ô µX = µX1 b ¨ ¨ ¨ b µXn (1.26)

A convenient tool for integration with respect to product measures is the Fubini-
Tonelli’s Theorem whose general statement we refer the reader to to the literature. For
random variables this theorem reads:

Theorem 1.19 (Fubini-Tonelli for random variables) For X1, . . . , Xn independent,

E
�
X1 . . . Xn) =

nπ

i=1

EXi (1.27)

when either @i : Xi • 0 or @i : E|Xi| † 8.

Similarly as independence is stronger than pairwise independence, the conclusion of
the previous theorem implies, but is not equivalent to:

Definition 1.20 The random variables X1, . . . , Xn P L2
are said to be uncorrelated if

@i † j : E(XiXj) = (EXi)(EXj) (1.28)

A very notable exception to this are Gaussian (a.k.a. multivariate normal) random
variables for which being uncorrelated does imply independence. We will review this
when this becomes relevant.

An important construction from measure theory allows us to construct a measure
space that is a product of any finite number of probability spaces. This in particular
permits us to put any finite number of random variables as independent on the same
probability space. However, the construction is not limited to finite products:

Theorem 1.21 For any sequence tµnun•1 of probability measures on (R, B(R)) there exists a
probability space (W,F , P) supporting random variables tXnun•1 such that

Preliminary version (subject to change anytime!) Typeset: April 7, 2025



MATH 275B notes 8

‚ @n • 1 : µn is the distribution of Xn, and
‚ tXnun•1 are independent

Proof (sketch). Let I := [0, 1) and consider the probability space (I,B(I), l) where l is
the Lebesgue measure on I. This space supports a uniform random variable U defined
by the identity map. Now define random variables tZnun•1 by

Zn := t2nUu mod 2 (1.29)

and check that these are independent Bernoulli (i.e., 0, 1-valued with mean 1/2). Then
define random variables tUnun•1 by

Un :=
ÿ

i•1

Z2ni+2n´12´i (1.30)

and check that these are independent copies of U. Finally, for each n • 1 denote

Fn(x) := µn
�
(´8, x]

�
(1.31)

and set
Xn := F´1

n (Un) (1.32)
where F´1

n (u) := inftx P R : u § Fn(x)u, and check that tXnun•1 are independent with µn
being the distribution of Xn. ⇤

The reason why we included the above proof is to demonstrate that there is no need
to invoke the tool that is frequently called upon to get this result: the Kolmogorov Exten-
sion Theorem. This theorem permits putting general (even non-product) measures on
product spaces over general (even uncountable) index sets but there is price to pay: one
has to assume that the individual measurable spaces in the product are standard Borel.
For product spaces, a different argument based, vaguely, on projection limits allows us
to construct a product of full measure spaces (not just a family of random variables on
these) regardless of their underlying structure and the cardinality of the index set (thus
avoiding the Kolmogorov Extension Theorem altogether).

Further reading: Durrett, Chapter 1 and Appendix A
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2. REVIEW OF 275A MATERIAL: CONVERGENCE THEOREMS

We will now move to the discussion of a number of limit results from introductory prob-
ability theory. For most of these we only give their statements referring the reader to
textbooks for proofs.

2.1 Weak laws of of large numbers.

We start by the so called Weak Law of Large Numbers (WLLN) whose informal state-
ment goes as far back as G. Cardano (16th century) and whose first proof for the special
case of zero-one valued random variables we owe to J. Bernoulli (early 18th century).
The following form is largely due to P.L. Chebyshev and A.Y. Khinchin:

Theorem 2.1 (WLLN) Let X1, X2, . . . be i.i.d. and set Sn := X1 + ¨ ¨ ¨ + Xn. Then the
following are equivalent:

(1) there exists tanun•1 P RN such that

@e ° 0 : P
✓ˇ̌

ˇ
Sn

n
´ an

ˇ̌
ˇ ° e

◆
›Ñ
nÑ8 0 (2.1)

(2) xP(|X1| ° x) ›Ñ
xÑ8 0

If E|X1| † 8, the above holds with an := EX1 for all n • 1.

Note that the statement (2.1) concerns a specific mode of convergence that we record
for future use:

Definition 2.2 Let tYnun•1 and Y be random variables. We say that Yn converges to Y
in probability, with notation Yn

P
Ñ Y, if

@e ° 0 : P(|Yn ´ Y| ° e) Ñ 0 (2.2)

A short way to state (2.1) is thus by saying Sn/n ´ an
P

Ñ 0 and, when E|X1| † 8, by
saying Sn/n P

Ñ EX1. In either case, the statement implies that the distribution of Sn/n
becomes increasingly squeezed, or concentrated, at around a deterministic value an.

The particular choice when X1 is an indicator of an event A may serve as a justification
of the Kolmogorov model: Indeed, Sn is then the number the event A occurred in n
independent samples and Sn/n is the relative frequency of occurrence. The WLLN says
that the relative frequency converges to EX1 = P(A), the probability of event A.

The proof of (2.1) reduces to an elementary application of the Chebyshev inequality
when X1 P L2. (This is the part that goes back to Chebyshev.) For the general cases we
need to first show that, under (2),

P(max
1§i§n

|Xi| ° n) ›Ñ
nÑ8 0. (2.3)

This permits us to truncate the random variables and apply the Chebyshev inequality
again. To demonstrate why the tail decay (2) is actually necessary note that, for X1
Cauchy also Sn/n is Cauchy and so (2.1) fails.
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The conditions under which (1) of Theorem 2.1 holds can be generalized multiple
ways. Instead of one sequence, we can work with triangular arrays (i.e., a sequence
of n independent random variables for each n). Since the proof relies only on a second-
moment calculation, one does not even need independence; it suffices that the random
variable are uncorrelated.

2.2 Borel-Cantelli lemmas and the Strong law.

As observed by A.N. Kolmogorov based on earlier works of E. Borel and F. Cantelli, the
convergence in probability in the WLLN can be augmented using techniques for dealing
with infinite families of events. We start with:

Definition 2.3 Given events tAnun•1 we set

tAn i.o.u :=
£

n•1

§

k•n

Ak (2.4)

to denote the event that “An occurs infinitely often.”

Alternative notations for tAn i.o.u are lim supnÑ8 An and t
∞

n•1 1An = 8u with the
latter perhaps explaining better the reason for the name. We now use this to give a
concise definition of the probabilist’s version of almost-everywhere convergence:

Definition 2.4 Let tYnun•1 and Y be random variables. We say that Yn tends to Y almost

surely, with notation “Yn Ñ Y a.s.” if

@e ° 0 : P
�
|Yn ´ Y| ° e i.o.

�
= 0 (2.5)

To see that this is really the same as a.e.-convergence, note that
 

Yn Ñ Y pointwise
(
=

£

m•1

 
|Yn ´ Y| ° 2´m i.o.

(c (2.6)

The event on the right has full probability when (2.5) occurs.
As it turns out, the lack of occurrence of tAn i.o.u admits a simple sufficient condition:

Lemma 2.5 (1st Borel-Cantelli)
ÿ

n•1

P(An) † 8 ñ P(An i.o.) = 0 (2.7)

For independent events, this can be boosted to full characterization:

Lemma 2.6 (2nd Borel-Cantelli)
ÿ

n•1

P(An) = 8 ^ tAnun•1 independent ñ P(An i.o.) = 1 (2.8)

In particular, we get our first zero-one law:

Corollary 2.7 Let tAnun•1 be independent events. Then

P(An i.o.) P t0, 1u. (2.9)
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A typical situation demonstrating the use of the above statements comes in an im-
provement of (2.3) to the form:

Corollary 2.8 Let X1, X2, . . . be i.i.d. random variables. Then for all A ° 0,

P
�
|Xn| ° An i.o.

�
=

#
0, if E|X1| † 8

1, if E|X1| = 8
(2.10)

In words, this says that a sequence of i.i.d. random variables will grow sublinearly if
the first absolute moment is finite and superlinearly (along a subsequence) otherwise.
By applying this to powers of random variables, similarly we get that

P
�
|Xn| ° An1/a i.o.

�
=

#
0, if E(|X1|

a) † 8

1, if E(|X1|
a) = 8

(2.11)

so existence of moments gives us bounds on growth rate of i.i.d. sequences. Note that
the bound is qualitative.

With the Borel-Cantelli lemmas at our disposal, one then improve the convergence in
probability in the WLLN to almost-sure convergence:

Theorem 2.9 (SLLN) Let X1, X2, . . . be i.i.d. such that EX1 exists (possibly equal to ˘8).
Set Sn := X1 + ¨ ¨ ¨ + Xn. Then

Sn

n
›Ñ
nÑ8 EX1 a.s. (2.12)

Without going into details, we note that, for X1 P L4, a proof exists that is based on the
Chebyshev inequality (for the fourth moment of Sn) and the 1st Borel-Cantelli lemma.
(Specifically, assuming EX1 = 0 we estimate P(|Sn| ° en) by a quantity of order n´2

which is summable on n.) This observation already implies the Borel SLLN which is a
special case of the above for X1 being an indicator of an event.

If we aim for the statement under the condition X1 P L1 (the extension to the case
stated above is then achieved by suitable truncation when EX1 diverges), which was
first made by Kolmogorov in 1930s, the argument usually presented (due to N. Etemadi)
invokes truncation and the Chebyshev inequality to first extract convergence along ex-
ponentially growing subsequences. A renewal-type argument is then invoked (under a
restriction to positive sequences) to “fill the gaps” and get full convergence.

Many alternative proofs exist, some of which work in larger generality than just i.i.d.
sequences. Indeed, the SLLN is a special case of de Finetti’s Theorem on a.s. convergence
of exchangeable sequences. The SLLN can be proved using Doob’s Martingale Conver-
gence Theorem. Another theorem that subsumes the SLLN is Birkhoff’s Ergodic Theorem.
While our goal is to present these advanced results sometime later this quarter, in the
next subsection we will present a proof that is more or less the same “level” as the SLLN,
relying only on the convergence of random series.

We make a few additional observations. The first one (also due to Kolmogorov)
demonstrates the necessity of finite first moments:
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Lemma 2.10 Let X1, X2, . . . be i.i.d. and Sn := X1 + ¨ ¨ ¨ + Xn. If tSn/nun•1 converges to a
finite random variable on a set of positive probability, then E|X1| † 8.

Proof. Note that
Xn

n
=

Sn

n
´

n ´ 1
n

Sn´1

n ´ 1
(2.13)

The convergence of Sn/n to a finite (random) limit on a set of positive measure thus
implies a similar convergence of Xn/n. By Corollary 2.8 this forces E|X1| † 8. ⇤

As a corollary of the SLLN we get:

Theorem 2.11 (Glivenko-Cantelli) Let X1, X2, . . . be i.i.d. and, for n • 1 and t P R, set

Fn(t) :=
1
n

nÿ

i=1

1tXi§tu (2.14)

Denote F(t) := P(X1 § t). Then

sup
tPR

ˇ̌
Fn(t) ´ F(t)

ˇ̌
›Ñ
nÑ8 0 a.s. (2.15)

To put this in words, the empirical CDF generated by the first n terms of the sequence
X1, X2, . . . converges to the actual CDF uniformly on R. (This mode of convergence cor-
responds to the Kolmogorov distance on probability measures on R so Theorem 2.11
in fact says that the empirical law 1

n
∞n

i=1 dXi tends to the distribution of X1 in the Kol-
mogorov distance.) As to the proof, the SLLN implies Fn(t) Ñ F(t) a.s. for each t (with
the implicit null set possibly depending on t) so the main issue is to achieve uniformity.
Here the monotonicity and right-continuity of Fn and F play a key role.

2.3 Convergence of random series.

Another set of convergence theorems arises while studying convergence of infinite series
associated with sequences of independent random variables. A simple application of the
Monotone Convergence Theorem shows

8ÿ

k=1

E|Xk| † 8 ñ

8ÿ

k=1

|Xk| † 8 a.s. (2.16)

However, we are interested mainly in the conditions in which the series
∞8

k=1 Xk con-
verges conditionally, but not absolutely. A simple result in this vain is:

Theorem 2.12 (Paley-Zygmund) Let X1, X2, . . . be independent, uniformly bounded and
symmetric (i.e, @i • 1 : Xi

law
= ´Xi). Then

8ÿ

i=1

Xi converges in R a.s. ô

ÿ

i•1

E(X2
i ) † 8 (2.17)

Here we say “in R” to make it unequivocally clear that we do not allow convergence
to ˘8. The proof of sufficiency of the summability condition relies on Kolmogorov’s
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Maximal Inequality (boundedness is not needed in this step); the reverse direction in
turn uses the Paley-Zygmund inequality. General series are handled by:

Theorem 2.13 (Kolmogorov 3-series theorem) Let X1, X2, . . . be independent. Then
∞8

i=1 Xi
converges in R a.s. if and only if DA ° 0 such that, for Yi := Xi1|Xi|§A,

ÿ

i•1

P(|Xi| ° A) † 8 ^

ÿ

i•1

Var(Yi) † 8 ^

8ÿ

i=1

EYi converges in R (2.18)

We will now use this theorem to give:
Proof of the SLLN in Theorem 2.9. Let tXkuk•1 be i.i.d. with E|X1| † 8. For all k • 1, let

Zk := Xk1t|Xk|§ku (2.19)

The 1st Borel-Cantelli lemma shows

P
�
Zn ‰ Xn i.o.

�
= 0 (2.20)

which means that it suffices to prove the claim with tZkuk•1 replacing tXkuk•1. First we
show that

8ÿ

k=1

Zk ´ EZk
k

converges in R a.s. (2.21)

We will prove this by calling on Theorem 2.13 which requires checking the three-series
conditions (2.18). In light of (Zk ´ EZk)/k being bounded by 2 and having zero mean,
all we have to show is that

ÿ

k•1

Var
⇣Zk

k

⌘
† 8 (2.22)

For this we compute
ÿ

k•1

Var
⇣Zk

k

⌘
§

ÿ

k•1

1
k2 E(Zk) =

ÿ

k•1

1
k2

ª 8

0
2tP
�
|Zk| ° t

�
dt

§

ÿ

k•1

1
k2

ª k

0
2tP
�
|X1| ° t

�
dt =

ª 8

0
2t
⇣ ÿ

k•1

1
k2 1[0,k)(t)

⌘
P
�
|X1| ° t

�
dt

(2.23)

where the last step is by Tonnelli’s theorem. The inequality k + 1 § 2k for k • 1 along
with an integral test for series gives

ÿ

k•1

1
k2 1[0,k)(t) §

ÿ

k•rts

4
(k + 1)2 § 4

ª 8

t

1
x2 dx § 4t´1 (2.24)

Plugging this above then shows
ÿ

k•1

Var
⇣Zk

k

⌘
§ 8

ª 8

0
P
�
|X1| ° t

�
dt = 8E|X1| † 8 (2.25)

thus proving (2.22).
With (2.21) established, we call upon:
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Lemma 2.14 (Kronecker) Let tanun•1 and tbnun•1 be R-valued sequences with

@n • 1 : bn+1 • bn ° 0 ^ lim
nÑ8 bn = 8 (2.26)

Then 8ÿ

n=1

an

bn
converges in R ñ

1
bn

nÿ

k=1

ak ›Ñ
nÑ8 0 (2.27)

Postponing the proof until the end of this proof, from (2.21) we then get

1
n

nÿ

k=1

(Zk ´ EZk) ›Ñ
nÑ8 0 a.s. (2.28)

But the Dominated Convergence Theorem shows

EZk = E
�
X11t|X1|§ku

�
›Ñ
nÑ8 EX1 (2.29)

and so we conclude
1
n

nÿ

k=1

Zk ›Ñ
nÑ8 EX1 a.s. (2.30)

In light of (2.20), this implies the statement of the SLLN under finite first moment. (The
case of EX1 = ˘8 is handled by trunction.) ⇤

It remains to give:
Proof of Lemma 2.14. Denote sn :=

∞n
k=1

ak
bk

with s0 := 0. Then ak = bk(sk ´ sk´1) and
summation by parts shows

1
bn

nÿ

k=1

ak =
1
bn

nÿ

k=1

bk(sk ´ sk´1)

= sn +
1
bn

n´1ÿ

k=1

(bk ´ bk+1)sk =
b1

bn
sn +

n´1ÿ

k=1

bk ´ bk+1
bn

(sk ´ sn),

(2.31)

where we used that
∞n

k=1(bk ´ bk+1) = b1 ´ bn. Now observe that, since bn Ñ 8

while tsnun•1 converges and is thus bounded, the first term on the right tends to zero
and so do any finite number of terms in the series on the right. For k0 so large that
|sk ´ sn| † e for k, n • k0, we in turn get

ˇ̌
ˇ̌

n´1ÿ

k=k0

bk ´ bk+1
bn

(sk ´ sn)

ˇ̌
ˇ̌ § e

n´1ÿ

k=k0

bk+1 ´ bk
bn

§ e. (2.32)

The right-hand side of (2.31) thus tends to zero as n Ñ 8. ⇤
The above proof of the SLLN has the advantage that it generalizes to:

Theorem 2.15 (Marcinkiewicz-Zygmund SLLN) Let p P (0, 2) and let X1, X2, . . . be i.i.d.
with X1 P Lp. If p • 1 assume also EX1 = 0. Then

1
n1/p

nÿ

k=1

Xk ›Ñ
nÑ8 0 a.s. (2.33)
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Proof. For p = 1 this is the SLLN so we may assume p ‰ 1. We proceed very much like
in the above proof of the SLLN. Denote

Zk := Xk1t|Xk|§k1/pu (2.34)

Then (2.11) shows
P
�
Zn ‰ Xn i.o.

�
= 0 (2.35)

We now claim
8ÿ

k=1

Zk ´ EZk

k1/p converges in R a.s. (2.36)

for which we invoke Theorem 2.13. It again suffices to show
ÿ

k•1

Var
⇣ Zk

k1/p

⌘
† 8 (2.37)

Here the calculation (2.23) gets modified into

ÿ

k•1

Var
⇣ Zk

k1/p

⌘
§

ÿ

k•1

1
k2/p

ª k1/p

0
2tP
�
|X1| ° t

�
dt

=
ª 8

0
2t
⇣ ÿ

k•1

1
k2/p 1[0,k1/p)(t)

⌘
P
�
|X1| ° t

�
dt

(2.38)

The inequality k + 1 § 2k for k • 1 along with an integral test for series give
ÿ

k•1

1
k2/p 1[0,k1/p)(t) §

ÿ

k•tp

22/p

(k + 1)2/p § 22/p
ª 8

tp

1
x2/p dx § A(tp)1´2/p (2.39)

where A := 22/p(2/p ´ 1)´1. Plugging this in (2.38) yields
ÿ

k•1

Var
⇣ Zk

k1/p

⌘
§ 2A

ª 8

0
tp´1P

�
|X1| ° t

�
dt = 2p´1AE

�
|X1|

p� (2.40)

which is finite by our assumptions.
With (2.36) in hand, we now claim that

8ÿ

k=1

|EZk|

k1/p † 8 (2.41)

For p † 1 we use that EZk = E(X11t|X1|§k1/pu) to bound

8ÿ

k=1

|EZk|

k1/p § E
⇣

|X1|

8ÿ

k=1

1
k1/p 1t|X1|§k1/pu

⌘
(2.42)

and observe that, by an integral test along with the fact that 1/p ° 1,
8ÿ

k=1

1
k1/p 1t|X1|§k1/pu § C(p)

�
|X1|

p�1´1/p
= C(p)|X1|

p´1 (2.43)
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for some constant C(p) † 8. For p ° 1 we in turn use that EX1 = 0 to get

EZk = E(X11t|X1|§k1/pu) = E(X11t|X1|°k1/pu) (2.44)

which then implies
8ÿ

k=1

|EZk|

k1/p § E
⇣

|X1|

8ÿ

k=1

1
k1/p 1t|X1|°k1/pu

⌘
(2.45)

As 1/p † 1 we now have
8ÿ

k=1

1
k1/p 1t|X1|°k1/pu § C(p)

�
|X1|

p�1´1/p
= C(p)|X1|

p´1 (2.46)

for some constant C(p) † 8. Hence, in both cases we get
8ÿ

k=1

|EZk|

k1/p § C(p)E
�
|X1|

p� (2.47)

which is finite by our assumption.
Since (2.41) implies convergence of

∞8
k=1

EZk
k1/p , using (2.36) we conclude

8ÿ

k=1

Zk

k1/p converges in R a.s. (2.48)

Lemma 2.14 then gives
1

n1/p

nÿ

k=1

Zk ›Ñ
nÑ8 0 a.s. (2.49)

In light of (2.35) we then get the claim. ⇤

Further reading: Durrett, Chapter 2
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3. WEAK CONVERGENCE AND LINDEBERG’S CLT

In this section we still continue reviewing the 275-material; specifically, the part con-
cerning the weak convergence of probability measures on the real line. We proceed by
restating the standard version of the Central Limit Theorem and then state and prove its
more enhanced form due to Lindeberg.

3.1 Weak convergence on the real line.

Earlier we reviewed the notions of convergence in probability and converence almost
surely. Here we will discuss the notion of convergence in distribution, a.k.a., conver-
gence in law or just weak convergence. The latter term should not to be confused with
the notion of weak convergence in functional analysis (we will comment on the differ-
ences later). We start with a definition:

Definition 3.1 Let tFnun•1 and F are non-decreasing and right continuous functions

from R to R. We say that Fn converges weakly to F, with notation Fn
w

›Ñ F, if

@x P DF : Fn(x) ›Ñ
nÑ8 F(x) (3.1)

where DF := tx P R : F continuous at xu.

We now use the above to give the following derived notions:

Definition 3.2 For Borel probability measures tµnun•1 and µ on R, we say that µn

tends to µ weakly, with notation µn
w

›Ñ µ, if the associated CDFs defined by Fn(x) :=
µn((´8, x]) and F(x) := µ((´8, x]) obey Fn

w
›Ñ F.

Definition 3.3 For R-valued random variables tXnun•1 and X, we say that Xn tends
to X weakly, with notation Xn

w
›Ñ X, if the distributions µn(A) := P(Xn P A) and

µ(A) := P(X P A) associated with these random variables obey µn
w

›Ñ µ.

The prime motivation for the first definition is the content of the last one: develop a
mode of convergence which captures when the statistics of a sequence random variables
somehow tends to a limit. Note that µn

w
›Ñ µ if and only if µ((a, b]) Ñ µ((a, b]) for

all a, b P DF. The set DF is dense since R r DF is at most countable.
The exclusion of the discontinuity points is reasonable in light of the following exam-

ple: Given a strictly decreasing sequence tanun•1 of reals tending to some a, the CDF
Fn(x) = 1[an,8) of random variables Xn := an tends to 1(a,8) which is not a CDF due
to lack of right continuity at a. It is till reasonable to declare the limit random variable
to be X := a, which has CDF F(x) := 1[a,8). Since weak convergence excludes the
discontinuity points, we have Fn

w
›Ñ F as desired.

It is easy to check that almost-sure convergence implies convergence in probability
which then implies convergence in distribution, a.k.a., weak convergence. Using the
1st Borel-Cantelli lemma, convergence in probability in turn implies existence of an a.s.-
convergent subsequence. The following gives the corresponding version of the converse
for the weak convergence:
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Theorem 3.4 (Skorohod representation) Given Borel probability measures tµnun•1 and µ8
on R, if µn

w
Ñ µ8, then there exists a probability space (W,F , P) supporting random variables

tXnun•1 and X8 such that
‚ @n P t1, . . . , 8u : µn is the distribution of Xn, and
‚ Xn Ñ X8 a.s.

Proof (sketch). Realizing the random variables as Xn = F´1
n (U) and X8 = F´18 (U),

for U a uniform random variable on [0, 1] and F´1
n a suitable inverse of Fn, we then just

verify the two claims. ⇤
Note that, since the weak convergence does not require the random variable to be

defined on the same probability space, the above is really best one can hope to get. An
important consequence of the Skorohod embedding reads:

Corollary 3.5 Xn
w
Ñ X implies

@ f P Cb(R) : E f (Xn) ›Ñ
nÑ8 E f (X) (3.2)

Highlighting this fact is not a coincidence; indeed, (3.2) actually turns out to be equiva-
lent to Xn

w
›Ñ X. (We will prove this later in the form of the Portmanteau theorem.)

With the notion of weak convergence settled, one is naturally interested in finding
convergent sequences. Here is a tool in this regard, proved with the help of Cantor’s
diagonal argument and some extension arguments based on monotonicity:

Theorem 3.6 (Helly selection theorem) Given a sequence tFnun•1 of CDFs, there is a strictly
increasing sequence tnkuk•1 of naturals and a non-decreasing right-continuous F : R Ñ [0, 1]
such that Fnk

w
›Ñ F (as k Ñ 8).

Notice that we do not claim that F is CDF because it may not be. (For instance, take
Fn(x) := 1[n,8)(x) which tends pointwise to zero.) To prevent this from happening, we
need another property:

Definition 3.7 (Tightness) A sequence of CDFs tFnun•1 is tight if

@e ° 0 DM ° 0 : sup
n•1

⇥
Fn(´M) + 1 ´ Fn(M)

⇤
† e (3.3)

Rewriting (3.3) using the probability measures tµnun•1 associated with the CDFs tFnun•1
leads to a perhaps more intuitive expression

@e ° 0 DM ° 0 : sup
n•1

µn
�
[´M, M]c

�
† 8 (3.4)

Tightness thus ensures that all but a small fraction of total mass of all the measures in
the sequence stays confined to the same compact set which in particular means that no
mass can escape to infinity in the limit. (This is the form that will define tightness in
more general settings.) Returning to our previous line of thought, we now have:

Theorem 3.8 Given CDFs tFnun•1, assume there is a non-decreasing and right-continuous
function F such that Fn

w
›Ñ F. Then F is a CDF if and only if tFnun•1 is tight.
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3.2 Characteristic function.

As noted above, convergence of expectation of bounded continuous functions turns out
to be equivalent to weak convergence. Checking all such functions may be tedious but,
as it turns out, we only need to focus on a one parameter family; namely, the complex
exponentials. This leads to:

Definition 3.9 Given a real-valued random variable X, its characteristic function is

jX(t) := EeitX := E cos(tX) + iE sin(tX) (3.5)

or, by the change of variables formula, jX(t) :=
≥

eitxµX(dx).

Notice that jX is bounded with |jX(t)| § jX(0) = 1, and is uniformly continuous.
Moreover, we have the following fact

X, Y independent ô jX+Y = jX jY (3.6)

Here “ñ” is quite immediate but for “” we need the conclusion of:

Lemma 3.10 (Inversion formula) Let j be the characteristic function associated with a finite
Borel measure µ on R. Then

@a † b : lim
TÑ8

1
p

ª T

´T
j(t)

e´ita
´ e´itb

it
=

1
2

µ
�
[a, b]

�
+

1
2

µ
�
(a, b)

�
(3.7)

In particular, µ is uniquely determined by j.

Proof. Using Fubini-Tonelli and a change of variables we write the integral on the left as
ª ✓ª b

a

✓ª T

´T
eit(x´u)dt

◆
du
◆

µ(dx)

=
ª ✓ª b

a

sin[T(x ´ u)]
x ´ u

du
◆

µ(dx) =
ª ✓ª T(x´a)

T(x´b)

sin u
u

du
◆

µ(dx)
(3.8)

Now recall that
≥T

0
sin u

u du Ñ
p
2 as T Ñ 8 and note that this gives

ª T(x´a)

T(x´b)

sin u
u

du ›Ñ
TÑ8

1
2

1(a,b)(x) +
1
2

1[a,b]. (3.9)

Since this also implies that the integral on the left is bounded uniformly in x, the state-
ment follows using the Bounded Convergence Theorem. ⇤

We now state the key tool that makes working with characteristic functions easy:

Theorem 3.11 (Lévy continuity theorem) Suppose tXnun•1 are random variables such that

@t P R : j(t) := lim
nÑ8 jXn(t) exists (3.10)

If j is continuous at t = 0, then there exists a random variable X such that

@t P R : j(t) = EeitX
^ Xn

w
Ñ X. (3.11)
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Proof. The key role of continuity is to imply tightness. This is based on the following
analytic argument. Let Y be a random variable and jY its characteristic function. Then

1
t

ª t

0

⇥
1 ´ Re jY(s)

⇤
du =

1
t

E
ª t

0

�
1 ´ cos(uY)

�
du = E

✓
1 ´

sin(tY)
tY

◆
(3.12)

where sin(u)/u := 1 when u = 0. Observing that the function under expectation is
always non-negative, we restrict the expectation to |Y| • 1/t and get

P
�
|Y| ° 1/t

�
§

c
t

ª t

0

⇥
1 ´ Re jY(s)

⇤
du (3.13)

where c´1 := infu•1(1 ´ sin(u)/u). Returning to our problem, under the continuity
of j, for each e ° 0 there exists t ° 0 such that |jXn(t) ´ 1| † e for all n • 1. But then
P(|Xn| ° 1/t) § ce for all n • 1, implying tightness.

With the laws of tXnun•1 tight, Theorem 3.6 ensures that any increasing sequence of
naturals contains a subsequence along with the laws converge weakly. But the charac-
teristic function of the limit law is then j which, by Lemma 3.10, determines the limit
law uniquely. It follows that all convergent subsequences converge to the same limit.
Hence we get convergence. ⇤

Note that if we recognize j to be a characteristic function of a random variable, then
it is automatically continuous and that random variable is the limiting X. We also note
that a similar result holds for the convergence of the moment generating function. This
goes by the name Curtiss theorem. We refer to homework for details.

As an application of the Lévy Continuity Theorem, we now give:

Theorem 3.12 (Central Limit Theorem) Let X1, X2, . . . be i.i.d. with X1 P L2. Denote
µ := EX1 and s2 := Var(X1) and let Sn := X1 + ¨ ¨ ¨ + Xn. Then

Sn ´ µn
?

n
w

›Ñ
nÑ8 N (0, s2) (3.14)

Proof. Replacing Xi by Xi ´ µ allows us to assume that µ = 0. By (3.6) we then have

E
�
eitSn/

?
n� = jX1(t/

?
n)n (3.15)

Under the condition X1 P L2 the characteristic function permits Taylor expansion

jX1(t) = 1 + i0 ´
t2

2
E(X2

1) + o(t2) (3.16)

where o(t2) is a term vanishing upon division by t2 and taking t Ñ 0. Using the above
parametrization, this rewrites as

jX1(t) = 1 ´
t2

2n
s2 + o(n´1) (3.17)

where o(n´1) denote a complex valued sequence that decays faster than 1/n. Using
that for any complex-valued sequence tznun•1 that converges to some z P C we have

Preliminary version (subject to change anytime!) Typeset: April 7, 2025



21 MATH 275B notes

(1 + zn/n)n
Ñ ez as n Ñ 8, from (3.15) and (3.17) we conclude

@t P R : E
�
eitSn/

?
n�

›Ñ
nÑ8 e´ 1

2 t2s2
(3.18)

The right hand side is the characteristic function of N (0, s2) which, in particular, means
that it is continuous at t = 0. The claim then follows from Theorem 3.11. ⇤

The history of the above result is very long. A very early version for zero-one valued
random variables was posited by de Moivre in 1733 but went largely unnoticed until
Laplace provided a first rigorous argument in 1812. A rather general version of the
theorem was proved by Lyapounov in 1901 and then ultimately by Lindeberg in 1922.
The above elegant proof is due to Lévy (1937). The word “central” was coined by Pólya
in 1920 for the central role this result plays in probability and sciences.

3.3 Lindeberg’s CLT.

The above CLT is quite elegant but we often need to relax the assumptions further. For
instance, there is no need to use the same random variable for each n; their law may
change with n. Similarly, there is no need that the random variables are equidistributed;
we can allow their laws to change with their index as well.

Of course, implementing these changes requires a different formulation that we owe
to Lyapounov (1901) and, ultimately, Lindeberg (1922).

Theorem 3.13 (Lindeberg’s CLT) Let tm(n)un•1 be a sequence of positive naturals tending
to infinity and assume that tXn,k : n • 1, 1 § k § m(n)u is a family of random variables such
that, for all n • 1,

‚ Xn,1, . . . , Xn,m(n) are independent
‚ @k = 1, . . . , m(n) : E(X2

n,k) † 8 ^ EXn,k = 0

Denote Sn :=
∞m

k=1(n)Xn,k and assume @n • 1 : Var(Sn) ° 0 and

@e ° 0 :
1

Var(Sn)

m(n)ÿ

k=1

E
�
X2

n,k1t|Xn,k|°e
?

Var(Sn)u
�

›Ñ
nÑ8 0 (3.19)

Then

1a
Var(Sn)

m(n)ÿ

k=1

Xn,k
w

›Ñ
nÑ8 N (0, 1) (3.20)

The condition (3.19) is called the Lindeberg condition. Note that by taking Xn,k := Xk,
where tXkuk•1 are i.i.d. random variable with zero mean and (finite) variance s2

° 0,
and setting m(n) := n we get Var(Sn) = ns2. The Lindeberg condition (3.19) then
follows thanks to

E(X2
11t|X1|°e

?
nu) ›Ñ

nÑ8 0 (3.21)

as implied by the Dominated Convergence Theorem. In particular, Theorem 3.13 sub-
sumes Theorem 3.12 as a corollary.
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The aforementioned Lyapounov result worked under a different condition than (3.19);
namely, under

Dp ° 2 :
1

[Var(Sn)]p/2

m(n)ÿ

k=1

E(X p
n,k) ›Ñ

nÑ8 0 (3.22)

This readily implies (3.19) by invoking Chebyshev’s inequality. To role of either of these
conditions is to ensure that no single random variable contributions a non-trivial pro-
portion of the overal variance. Assuming this, Feller derived the following converse to
Lindeberg’s result:

Theorem 3.14 (Feller) Assuming the setting of Theorem 3.13, suppose that

@e ° 0 : max
1§k§m(n)

P
⇣

|Xn,k| ° e
b

Var(Sn)
⌘

›Ñ
nÑ8 0 (3.23)

Then the weak convergence (3.20) implies Lindeberg’s condition (3.19).

Lindeberg’s condition is thus necessary and sufficient for triangular arrays of random
variables satisfying the condition (3.23). For this reason the Lindebeg’s result is some-
times referred to as Lindeberg-Feller CLT.

Leaving Feller’s theorem to homework, we will now move to the proof of Lindeberg’s
CLT. Abbreviate

sn :=
b

Var(Sn) (3.24)

and note that Lindeberg’s condition implies existence of a positive sequence tenun•1
tending to zero and satisfying

1
e2

ns2
n

nÿ

k=1

E
�
X2

n,k1|Xn,k|°ensn

�
›Ñ
nÑ8 0 (3.25)

We now use these to introduce the truncated variables

Xn,k := Xn,k1t|Xn,k|§ensnu (3.26)

and denote

Sn :=
m(n)ÿ

k=1

Xn,k (3.27)

Our first item of business is to show that the truncation does not have an effect, including
the first and second moments:

Lemma 3.15 The following hold

‚ P(|Sn ´ Sn| ‰ 0) Ñ 0
‚ s´1

n ESn Ñ 0
‚ s´2

n Var(Sn) Ñ 1
in the limit as n Ñ 8.
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Proof. We have

P(|Sn ´ Sn| ‰ 0) § P(Dk § n : |Xn,k| ° ensn)

§

nÿ

k=1

P(|Xn,k| ° ensn) §
1

e2
ns2

n

nÿ

k=1

E(X2
n,k1t|Xn,k|°ensnu).

(3.28)

This tends to zero by (3.25). Similarly, using that ESn = 0,

s´1
n |ESn| = s´1

n |E(Sn ´ Sn)|

§
1
sn

nÿ

k=1

E(|Xn,k|1t|Xn,k|°ensnu) §
1

ens2
n

nÿ

k=1

E(X2
n,k1t|Xn,k|°ensnu)

(3.29)

Now apply (3.25) to see that this tends to zero as well.
Finally, denoting Yn,k := Xn,k1t|Xn,k|°ensnu, independence of tXn,ku1§k§n for each n • 1

along with EXn,k = ´EYn,k give

Var(Sn) ´ s2
n =

nÿ

k=1

⇥
E(X2

n,k) ´ (EXn,k)
2

´ E(X2
n,k)
⇤

= ´

ÿ

k=1

⇥
E(Y2

n,k) + (EYn,k)
2⇤

(3.30)

Cauchy-Schwarz gives (E(Yn,k)2
§ E(Y2

n,k) and so

ˇ̌
s´2

n Var(Sn) ´ 1
ˇ̌

§
2
s2

n

nÿ

k=1

E(X2
n,k1t|Xn,k|°ensnu) (3.31)

By (3.25) this vanishes as n Ñ 8. ⇤
The upshot of the lemma is that it suffices to prove the result for the truncated vari-

ables. As these are no longer centered, we introduce Abbreviate

Zn,k := s´1
n (Xn,k ´ EXn,k) (3.32)

and note that EZn,k = 0 and

nÿ

k=1

E(Z2
n,k) ›Ñ

nÑ8 1 (3.33)

As is readily checked, it suffices to prove weak convergence of

pSn :=
m(n)ÿ

k=1

Zn,k (3.34)

to N (0, 1). For this we note that, denoting

jn,k(t) := EeitZn,k , (3.35)

we have

Eeit pSn =
m(n)π

k=1

jn,k(t) (3.36)
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Proceeding as in the proof of Theorem 3.12, we now have to expand the characteristic
functions on the right to its second order Taylor polynomial. Due to non-homogeneity,
this has to be done under the summation over k:

Lemma 3.16 (Taylor approximation)

@t P R :
m(n)ÿ

k=1

ˇ̌
ˇ̌jn,k(t) ´

⇣
1 ´

t2

2
E(Z2

n,k)
⌘ˇ̌

ˇ̌ ›Ñ
nÑ8 0 (3.37)

Proof. By Taylor’s theorem

jn,k(t) = 1 + i0 ´ t2
ª 1

0
uE
�
Z2

n,k eit(1´u)Zn,k
�
du (3.38)

and hence

jn,k(t) ´

⇣
1 ´

t2

2
E(Z2

n,k)
⌘
= t2

ª 1

0
uE
�
Z2

n,k(1 ´ eit(1´u)Zn,k)
�
du (3.39)

Truncation ensures |Zn,k| § 2en and so

|1 ´ eit(1´u)Zn,k | = 2
ˇ̌
sin
�
t(1 ´ u)Zn,k

�ˇ̌
§ max

0§x§2|t|en
2| sin(x)| (3.40)

which only depends on n. Hence

m(n)ÿ

k=1

ˇ̌
ˇ̌jn,k(t) ´

⇣
1 ´

t2

2
E(Z2

n,k)
⌘ˇ̌

ˇ̌ §
1
2

t2
⇣

max
0§x§2|t|en

2| sin(x)|
⌘ m(n)ÿ

k=1

E(Z2
n,k). (3.41)

The maximum tends to zero as n Ñ 8. ⇤
In order to apply the above expansion under the product in (3.36), we also need:

Lemma 3.17 Let n • 1 and z1, . . . , zn, w1, . . . , wn P tz P C : |z| § 1u. Then
ˇ̌
ˇ̌

nπ

i=1

zi ´

nπ

i=1

wi

ˇ̌
ˇ̌ §

nÿ

i=1

|zi ´ wi| (3.42)

Proof. The claim immediate for n = 1. For n ° 1 we have
ˇ̌
ˇ̌

nπ

i=1

zi ´

nπ

i=1

wi

ˇ̌
ˇ̌ § |zn|

ˇ̌
ˇ̌

n´1π

i=1

zi ´

n´1π

i=1

wi

ˇ̌
ˇ̌ + |zn ´ wn|

ˇ̌
ˇ̌
n´1π

i=1

wi

ˇ̌
ˇ̌

§ |zn ´ wn| +

ˇ̌
ˇ̌

n´1π

i=1

zi ´

n´1π

i=1

wi

ˇ̌
ˇ̌

(3.43)

The bound now follows by induction. ⇤
We are now ready to give:

Preliminary version (subject to change anytime!) Typeset: April 7, 2025



25 MATH 275B notes

Proof of Theorem 3.13. As E(Z2
n,k) § 4e2

n, we have |1 ´
t2

2 E(Z2
n,k)| † 1 for n " 1. By

Lemmas above,
ˇ̌
ˇ̌Eeit pSn ´

m(n)π

k=1

⇣
1 ´

t2

2
E(Z2

n,k)
⌘ˇ̌

ˇ̌ ›Ñ
nÑ8 0 (3.44)

Using that, for |z| § 1/2,
ˇ̌
log(1 + z) ´ z

ˇ̌
§

ÿ

k•2

|z|
k

k
§

ÿ

k•2

|z|
k

§
|z|

2

1 ´ |z|
§ 2|z|

2 (3.45)

we get that
ˇ̌
ˇ̌
ˇ log

m(n)π

k=1

⇣
1 ´

t2

2
E(Z2

n,k)
⌘
+

t2

2

m(n)ÿ

k=1

E(Z2
n,k)

ˇ̌
ˇ̌
ˇ

§ 2
m(n)ÿ

k=1

⇥ t2

2 E(Z2
n,k)
⇤2

§ 2t4e2
n

m(n)ÿ

k=1

E(Z2
n,k)

(3.46)

once n is so large that 2t2e2
n § 1. As

∞m(n)
k=1 E(Z2

n,k) Ñ 1, we conclude

@t P R : Eeit pSn Ñ e´t2/2 (3.47)

The Lévy continuity theorem (Theorem 3.12) gives pSn
w

›Ñ N (0, 1). ⇤
We note that a different argument bypassing Lemmas 3.16–3.17 above (and also likely

closer to the original Lindeberg’s argument) will be given in the next section.

3.4 Non-standard CLT.

As an example of the power of Lindeberg’s theorem, we give a short proof of CLT under
the conditions where the regular CLT does not apply.

Theorem 3.18 Suppose X1, X2, . . . are i.i.d. with

X1
law
= ´X1 ^ @x ° 1 : P(|X1| ° x) = x´2 (3.48)

Set Sn := X1 + ¨ ¨ ¨ + Xn. Then
Sna

n log n
w

›Ñ
nÑ8 N (0, 1) (3.49)

Proof. We will have to truncate the sequence to bring it to the form to which Theo-
rem 3.13 can be applied. For truncation we will use a sequence tanun•1 of positive reals
with specific growth to be determined. Denote Xn,k := Xk1t|Xk|§anu. The assumed sym-
metry ensures EXn,k = 0 and, assuming also an • 1, we have

Var(Xn,k) = E(X2
n,k) =

ª 8

0
2tP
�
|Xn,k| ° t

�
dt

= 1 +
ª an

1
2t

1
t2 dt = 1 + 2 log(an)

(3.50)
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In order for the truncation to have no effect, it suffices that

P
�
Dk § n : |Xk| ° an

�
§ nP

�
|X1| ° an

�
=

n
a2

n
›Ñ
nÑ8 0 (3.51)

In particular, for this an has to grow faster than
?

n. On the other hand, to get Lindeberg’s
condition, it suffices that Sn := Xn,1 + ¨ ¨ ¨ + Xn,n obeys

anb
Var(Sn)

›Ñ
nÑ8 0. (3.52)

Indeed, then |Xn,k| § an † e
b

Var(Sn) for n sufficiently large which means that Linde-
berg’s condition holds trivially.

To satisfy the two requirements, set

an :=
a

n log log n (3.53)

and observe that this grows faster than
?

n but slower than
b

Var(Sn) which by (3.50) is
proportional to

a
n log n. Lindeberg’s CLT then gives the result. ⇤

One can of course prove Theorem 3.18 by invoking truncation directly inside the proof
of Theorem 3.12 and treating carefully the errors. The main point of Lindeberg’s formu-
lation is that it is general enough to adapt to other situations as well; see Durrett’s book
for its application to counting random permutations or a proof of one direction of Kol-
mogorov’s 3-series theorem.

Further reading: Durrett, Sections 3.1-3.4
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4. QUANTITATIVE CLTS: LINDEBERG AND BERRY-ESSEEN

We now move to arguments that permit us to control the convergence to normality in
terms of explicit error bounds. Besides practical implications, this will allow us to give
new proofs of the qualitative CLTs discussed earlier.

4.1 Lindeberg’s method.

The first quantitative bound we present for closeness to normality is due to Lindeberg.
We state it as the following theorem:

Theorem 4.1 (Lindeberg’s method) Let n • 1 and let X1, . . . , Xn be real-valued random
variables such that

‚ X1, . . . , Xn are independent
‚ @k = 1, . . . , n : Xk P L3

Let Z be a random variable with the law

Z = N

✓ nÿ

k=1

EXk,
nÿ

k=1

Var(Xk)

◆
. (4.1)

Then for all f P C3
b(R),

ˇ̌
ˇ̌E f
⇣ nÿ

k=1

Xk

⌘
´ E f (Z)

ˇ̌
ˇ̌ § 5} f 3

}8
nÿ

k=1

E
�
|Xk|

3� (4.2)

The phrase “Lindeberg method” actually refers to the main idea of the proof which
is to swap X1, . . . , Xn, one by one, for independent normal random variables Z1, . . . , Zn
that agree with X1, . . . , Xn in the first two moments; i.e.,

@k = 1, . . . , n : Zk = N (EXk, Var(Xk)) (4.3)

This does give the desired bound because Z law
= Z1 + ¨ ¨ ¨ + Zn. The error caused by the

swap is quantified using Taylor’s theorem as shown in:

Lemma 4.2 Let X, Y, Z P L3 be independent with Z having the law

Z = N
�
EX, Var(X)

�
(4.4)

Then for all f P C3
b(R),

ˇ̌
E f (Y + X) ´ E f (Y + Z)

ˇ̌
§ 5} f 3

}8E
�
|X|

3� (4.5)

Proof. Taylor’s theorem gives

f (Y + X) = f (Y) + f 1(Y)X +
1
2

f 2(Y)X2 +
1
2

ª 1

0
f 3�Y + sX

�
X3s2ds (4.6)

with f (Y + Z) written similarly. Subtracting the two expressions and taking expectation
with the help of EX = EZ, Var(X) = Var(Z) and the assumed independence of X, Y, Z
shows ˇ̌

E f (Y + X) ´ E f (Y + Z)
ˇ̌

§
1
6

} f 3
}8
⇣

E
�
|X|

3�+ E
�
|Z|

3�
⌘

. (4.7)

Preliminary version (subject to change anytime!) Typeset: April 7, 2025



MATH 275B notes 28

In order to express E(|Z|
3), note that (a + b)3

§ 8|a|
3 + 8|b|

3 and apply the scaling prop-
erties of normal law to get

E
�
|Z|

3�
§ 8(E|Z|)3 + 8Var(Z)3/2E

�
|N (0, 1)|3

�
(4.8)

Using again that EX = EZ and Var(X) = Var(Z) while comparing moments via Jensen’s
inequality shows

(E|Z|)3 = (E|X|)3
§ E

�
|X|

3�

Var(Z)3/2 = Var(X)3/2
§
�
E(X2)

�3/2
§ E

�
|X|

3� (4.9)

A calculation shows E(|N (0, 1)|3) = 4?
2p

§ 2 and from (4.8) we get E(|Z|
3) § 24E(|X|

3).
Plugging this into (4.7) then yields the claim. (We are not trying to optimize numerical
prefactors.) ⇤

We are now ready to give:
Proof of Theorem 4.1. Let Z1, . . . , Zn be independent of each other and X1, . . . , Xn with
the law in (4.3). For each k = 1, . . . , n, let

Yk := X1 + ¨ ¨ ¨ + Xk´1 + Zk+1 + ¨ ¨ ¨ + Zn (4.10)

Then Lemma 4.2 gives
ˇ̌
ˇ̌E f
⇣ nÿ

k=1

Xk

⌘
´ E f

⇣ nÿ

k=1

Zk

⌘ˇ̌
ˇ̌ §

nÿ

k=1

ˇ̌
E f (Yk + Xk) ´ E f (Yk + Zk)

ˇ̌

§ 5} f 3
}8

nÿ

k=1

E
�
|Xk|

3�
(4.11)

Since Z law
= Z1 + ¨ ¨ ¨ + Zn, this is the desired claim. ⇤

As a simple application, we get our first quantitative CLT:

Corollary 4.3 (Quantitative CLT) Suppose X1, X2, . . . are i.i.d. random variables with X1 P

L3 and EX1 = 0. Let Z = N (0, Var(X1)). Then for all f P C3
b(R),

ˇ̌
ˇ̌E f
⇣ 1

?
n

nÿ

k=1

Xk

⌘
´ E f (Z)

ˇ̌
ˇ̌ §

5
?

n
} f 3

}8 E
�
|X1|

3� (4.12)

Proof. Apply Lindeberg’s bound (4.2) to Xk replaced by Xk?
n and observe that

nÿ

k=1

E
✓ˇ̌

ˇ
Xk
?

n

ˇ̌
ˇ
3
◆
=

1
?

n
E
�
|X1|

3� (4.13)

thanks to X1, . . . , Xn being equidistributed. ⇤
As another application, we give a somewhat different proof of Lindeberg’s CLT:

Proof of Theorem 3.13. Let Xn,1, . . . , Xn,m(n) be independent for each n • 1 with Xn,k P L2

and EXn,k = 0 for each k = 1, . . . , m(n). Without loss of generality, assume that the
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random variables are normalized so that
m(n)ÿ

k=1

EX2
n,k = 1 (4.14)

Lindeberg’s condition then implies existence of en ° 0 with en Ó 0 such that

Xn,k := Xn,k1t|Xn,k|§enu (4.15)

obeys the conclusions of Lemma 3.15. Namely, we get

P
�
Dk § m(n) : Xn,k ‰ Xn,k

�
›Ñ
nÑ8 0 (4.16)

m(n)ÿ

k=1

EXn,k ›Ñ
nÑ8 0 (4.17)

and
m(n)ÿ

k=1

Var(Xn,k) ›Ñ
nÑ8 1. (4.18)

By (4.16) we then have

@ f P Cb(R) : E f
⇣ m(n)ÿ

k=1

Xn,k

⌘
´ E f

⇣ m(n)ÿ

k=1

Xn,k

⌘
›Ñ
nÑ8 0 (4.19)

which means that we may focus on
∞m(n)

k=1 Xn,k instead of
∞m(n)

k=1 Xn,k.
Let Zn be a random variable with law

Zn = N

✓ m(n)ÿ

k=1

EXn,k,
m(n)ÿ

k=1

Var(Xn,k)

◆
(4.20)

and observe that Theorem 4.1 then gives
ˇ̌
ˇ̌ E f

⇣ m(n)ÿ

k=1

Xn,k

⌘
´ E f (Zn)

ˇ̌
ˇ̌ § 5} f 3

}8
m(n)ÿ

k=1

E
�
|Xn,k|

3� (4.21)

for all f P C3
b(R). But |Xn,k| § en and so

m(n)ÿ

k=1

E
�
|Xn,k|

3�
§ en

m(n)ÿ

k=1

E
�
|Xn,k|

2� (4.22)

which tends to zero because en Ó 0 and sum on the right converges by (4.18). Since
(4.17–4.18) implies E f (Zn) Ñ E f (Z) for Z = N (0, 1), from (4.19), (4.21) and (4.22) we
thus get

@ f P C3
b(R) : E f

⇣ m(n)ÿ

k=1

Xn,k

⌘
›Ñ
nÑ8 E f (Z). (4.23)

Preliminary version (subject to change anytime!) Typeset: April 7, 2025



MATH 275B notes 30

Applying this to f (x) = cos(tx) and f (x) = sin(tx), we conclude that the characteristic
function of

∞m(n)
k=1 Xn,k tends to that of Z. The Lévy continuity theorem (Theorem 3.11)

then gives the result. ⇤

4.2 Berry-Esseen theorem.

Our second quantitative bound for distance to normality comes in the following theorem
that dates back more than 80 years:

Theorem 4.4 (Berry 1941, Esseen 1942) Let X1, . . . , Xn be i.i.d. with X1 P L3 and EX1 = 0.
Then for Z = N (0, Var(X1)) and a constant c « 0.4785,

ˇ̌
ˇ̌P
⇣ 1

?
n

nÿ

i=1

Xi § a
⌘

´ P(Z § a)
ˇ̌
ˇ̌ § c

E(|X1|
3)

Var(X1)3/2
1

?
n

(4.24)

holds for all a P R.

We remark that the statement gives an estimate on the Kolmogorov distance of two
random variables which we define as

dK(X, Y) := sup
aPR

ˇ̌
P(X § a) ´ P(Y § a)

ˇ̌
(4.25)

The fact that this is invariant under scaling both X and Y by the same constant explains
why the bound on the right of (4.24) is also invariant under such rescaling.

We also note that the error-rate n´1/2 is generally best possible. Indeed, if X1, . . . , Xn
are Bernoulli, the distribution of their normalized sum is piecewise constant with jumps
(near the median) of order 1/

?
n. (This is checked from the calculation leading to de

Moivre-Laplace CLT or by way of the local Central Limit Theorem.) Since the CDF of Z
is continuous, the left-hand side is at least order 1/

?
n.

The proof is based on manipulations with characteristic functions and convolution
with Polya’s density; we refer to Durrett’s textbook for a full acount of all details. Inci-
dentally, the proof there gives c := 3; the above is a result of a long sequence of gradual
improvements and is due to Tyurin (2010).

Further reading: Durrett, Section 3.4.4
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5. QUANTITATIVE CLTS: STEIN’S METHOD

We proceed to discuss another method for estimating convergence to normality that is
due to Charles Stein (with the first article dating back to 1972).

5.1 Characterizing normality.

The presentations of Stein’s method typically open up by the following characterization
of the standard normal law:

Lemma 5.1 (Stein’s lemma) Let Y be an real-valued random variable. Then the following two
properties are equivalent:

‚ Y = N (0, 1)
‚ for all f P AC(R) with f 1 and x f bounded,

E f 1(Y) = E
�
Y f (Y)

�
(5.1)

Here AC(R) is the space of real-valued absolutely-continuous functions on R and x f is the
function defined as x f (x) := x f (x).

One direction of the proof is immediate:
Proof of ñ. Suppose first that f is continuously differentiable with f 1 and x f bounded.
Integration by parts then gives

ª
y f (y)e´ y2

2 dy = ´

ª
f (y)

d
dy

e´ y2
2 dy =

ª
f 1(y)e´ y2

2 dy. (5.2)

The case of general f P AC(R) is handled by replacing f by fe(x) := E f (x + Ze)
where Ze = N (0, e) and noting that fe Ñ f and f 1

e Ñ f 1
e pointwise a.e. as e Ó 0. The

convergence of integrals then follows using the Bounded Convergence Theorem. ⇤
The proof of  requires quite some effort. The main idea comes in:

Lemma 5.2 (Stein’s ODE) Let Z = N (0, 1) and assume h : R Ñ R to be measurable with
E|h(Z)| † 8. Then for all x P R,

fh(x) := e
x2
2

ª 8

x
e´ y2

2
⇥
Eh(Z) ´ h(y)

⇤ dy
?

2p

= e
x2
2

ª x

´8
e´ y2

2
⇥
h(y) ´ Eh(Z)

⇤ dy
?

2p

(5.3)

Moreover, fh P AC(R) and

f 1
h(x) ´ x fh(x) = h(x) ´ Eh(Z) (5.4)

holds for Lebesgue a.e. x P R

Proof. Both integrals converge absolutely thanks to our assumption E|h(Z)| † 8. Sub-
tracting the second integral from the first can be written as

ª 8

´8
e´ y2

2
⇥
Eh(Z) ´ h(y)

⇤ dy
?

2p
= Eh(Z) ´ Eh(Z) = 0. (5.5)
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Differentiation shows that fh obeys the ODE (5.4). ⇤
It is easy to check that fh is the unique solution to the ODE (5.4) subject to fh(x) Ñ 0

as x Ñ ´8. The reason why we offer two expressions for fh is because the first will be
used for x • 0 and the second for x § 0.

The formula (5.3) defines a linear map h fiÑ fh — writing fh = Ah defines the so-called
Stein operator A. Stein’s method typically relies on specific functional properties of this
map. For Lemma 5.1, the following suffices:

Lemma 5.3 Let h P L8(R). Then fh P AC(R) and

} fh}8 § 3}h}8 ^ } x fh}8 § 2}h}8 ^ } f 1
h}8 § 4}h}8 (5.6)

Proof. Let x ° 0. A change of variables y Ñ x + y gives

fh(x) =
ª 8

0
e´ y2

2 ´yx⇥Eh(Z) ´ h(y)
⇤ dy

?

2p
(5.7)

Using
?

2p • 1 to drop
?

2p from the denominator, dominating |Eh(Z) ´ h(y)| § 2}h}8
and bounding the resulting integral by retaining only one term in the exponent gives

ˇ̌
fh(x)

ˇ̌
§ 2}h}8 min

!c
p

2
,

1
x

)
(5.8)

A completely analogous (with 1/|x|) bound is derived for x † 0 using the second line in
(5.3) instead. Using these bounds and the fact that 2p § 9 we get | fh(x)| § 3}h}8 and
|x fh(x)| § 2}h}8. With the help of Stein’s ODE we infer also | f 1

h(x)| § 4}h}8. ⇤
We remark that the constants in (5.6) are certainly not optimal; the point of these

bounds is to show that the map h fiÑ fh is continuous as a map L8
Ñ L8 for fh itself, its

derivative and also its multiplier by x. We are now ready for:
Proof of  in Lemma 5.1. Assume that Y is a random variable such that (5.1) holds for
all f P AC(R) with f 1 and x f bounded. Given a P R let h := 1(´8,a]. Lemma 5.3 shows
that f 1

h and x fh are bounded and so, by Fubini applied to Stein’s ODE,

P(Y § a) ´ P(Z § a) = Eh(Y) ´ Eh(Z)

= E
⇥

f 1
h(Y) ´ Y fh(Y)

⇤
= 0

(5.9)

Since this holds for all a P R, we get Y law
= Z as desired. ⇤

5.2 Link to distance on measures.

The characterization of normality in Lemma 5.1 is a mere curiosity whose usefulness is
in its own right is rather limited. What should catch our eye is the argument (5.9) before
setting the whole quantity to zero. Indeed, the equality links the difference of the CDFs
of Y and Z to the expectation of f 1

h(Y) ´ Y fh(Y), which is only a function of Y. The way
we want to think about this is a way to derive, for any non-empty

H Ñ
 

h : measurable ^ E|h(Z)| † 8
(

(5.10)
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the identity
sup
hPH

ˇ̌
Eh(Y) ´ Eh(Z)

ˇ̌
= sup

hPH

ˇ̌
E[ f 1

h(Y) ´ Y fh(Y)]
ˇ̌

(5.11)

assuming that the right-hand side is meaningful for each h P H.
A key point of (5.11) that the quantity on the left is a pseudometric (on the space of

probability measures) and often a metric. Here are some examples: For the case

H :=
 

1A : A P B(R)
(

(5.12)

the supremum on the left of (5.11) defines the so called total-variational distance,

dTV(X, Y) := sup
APB(R)

ˇ̌
P(X P A) ´ P(Y P A)

ˇ̌
(5.13)

(For measures µ and n, this is sometimes denoted as }µ ´ n}TV.) This distance is often
used in discrete probability (where it reduces to half of the `1-norm of the difference
of the probability mass functions), but its use for continuum-distributed random vari-
ables is less useful due to poor behavior under perturbations; e.g., dTV(X, e + X) = 1
whenever e ‰ 0.

Reducing (5.12) to indicators of half-infinite intervals,

H := t1(´8,a] : a P Ru (5.14)

the supremum on the left of (5.11) defines the so called Kolmogorov distance,

dK(X, Y) := sup
aPR

ˇ̌
P(X § a) ´ P(Y § a)

ˇ̌
(5.15)

We have already encountered the Kolmogorov distance in the statement of the Glivenko-
Cantelli SLLN (Theorem 2.11) and (implicitly) the Berry-Esseen theorem (Theorem 4.4).
Convergence in the Kolmogorov distance implies weak convergence but the converse
fails unless the limit random variable is continuously distributed.

Our last example concerns the space of Lipschitz functions

H :=
 

h : AC ^ }h1
}8 § 1

(
(5.16)

with unit Lipschitz norm which gives rise to the notion of Wasserstein distance. As for
the two distances above, this is really distance on the set of probability measures which
we define in full generality as:

Definition 5.4 Given a metric space (X , r) and f : X Ñ R, let

} h}Lip := sup
x‰y

|h(y) ´ h(x)|
r(x, y)

(5.17)

Let M1(X ) := set of Borel probability measures on X . Then

dW(µ, n) := sup
"ˇ̌

ˇ
ª

hdµ ´

ª
hdn

ˇ̌
ˇ : }h}Lip § 1

*
(5.18)

is the Wasserstein distance of µ, n P M1(X )

To justify the use of the word “distance”, we state and prove:

Lemma 5.5 Assuming X to have finite r-diameter, dW is a metric on M1(X ).
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Proof. Neither the difference of the integrals nor the Lipchtitz norm change if a constant
is added to h. This allows us to reduce to h that vanish at some point, The assump-
tion of finite r-diameter then ensures that all such Lipschitz functions are bounded by
the diameter and so the supremum is finite. The positivity, symmetry and the triangle
inequality are then readily shown. It remains to show that

dW(µ, n) = 0 ñ µ = n (5.19)

Suppose dW(µ, n) = 0. Then
≥

hdµ =
≥

hdn whenever h is Lipschitz. Given a closed
set C Ñ X , note that hn(x) := 1 ´ mintnr(x, C), 1u obeys }hn}Lip § n and so its integrals
under µ and n are equal. But hn Ó 1C and the Bounded Convergence Theorem gives≥

hndµ Ñ µ(C). It follows that µ(C) = n(C) whenever C is closed. Since the closed sets
generate B(X ) and form a p-system, µ = n holds by Dynkin’s p/l-theorem. ⇤

To make our notations consistent with (5.13) and (5.15), we write

dW(X, Y) = dW(law of X, law of Y) (5.20)

whenever X and Y are random variables taking values in the same metric space.
We note that the Wasserstein distance arises naturally in the context of optimal trans-

port; indeed, dW(µ, n) is the minimal cost, as measured by the metric r, to “move” or
“transport” the mass of µ into the mass of n. That the minimal transport cost is ex-
pressed using (5.18) is the celebrated result called the Kantorovich duality.

The Wasserstein distance is more forgiving than the other two distances; indeed, we
have dK(dx, dy) = 1 whenever x ‰ y yet dW(dx, dy) = r(x, y) Ñ 0 as y Ñ x. The
connection improves when one of the measures is continuously distributed:

Lemma 5.6 (Wasserstein bounds Kolmogorov) Let µ be a Borel probability measure on R

and f a probability density w.r.t. Lebesgue measure l on R. Then

dK(µ, f l) §

b
2} f }8 dW(µ, f l) (5.21)

Proof. Let Y have law µ and Z have law f l. Fix a P R and, for d ° 0 let hd(x) = 0 for
x † a ´ d, hd(x) = 1 for x • a and hd linear on [a ´ d, a]. Then }hd}Lip = d´1 and, writing
h0(x) := 1(´8,a],

P(Y § a) ´ P(Z § a) = Eh0(Y) ´ Eh0(Z)
§ Ehd(Y) ´ Ehd(Z) + Ehd(Z) ´ Eh0(Z)

§ dW(Y, Z)d´1 + } f }8d/2
(5.22)

The right-hand side is minimizer when d2 = 2dW(Y, Z)/} f }8 at which the expression
equals the right-hand side of (5.21). The corresponding lower bound is derived similarly
and so we omit it. ⇤
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5.3 Stein’s method and approximate normality.

We will now return to the original line of thought and apply Stein’s method to get control
of approximate normality. We will work using the Wasserstein distance as that is where
the statement is easiest to make and derive:

Theorem 5.7 Let X1, . . . , Xn be independent with

@k = 1, . . . , n : Xk P L4
^ EXk = 0 (5.23)

Assume also
nÿ

k=1

E(X2
k ) = 1 (5.24)

and let Z = N (0, 1). Then

dW

⇣ nÿ

k=1

Xk, Z
⌘

§

nÿ

k=1

E
�
|Xk|

3�+

gffe
nÿ

k=1

Var(X2
k ) (5.25)

The proof of this theorem will require improvement on the continuity estimates from
Lemma 5.3 for the linear map h fiÑ fh in the situation when h P AC(R) and h1 is itself
bounded. This comes in:

Lemma 5.8 Suppose h P AC(R). Then

} fh}8 § 2}h1
}8 ^ } f 1

h}8 § }h1
}8 ^ } f 2

h }8 § 2}h1
}8 (5.26)

Proof (ideas). The proof is based on technical estimates for the integrals in (5.3). For
instance, Taylor’s theorem gives

ˇ̌
h(y) ´ Eh(Z)

ˇ̌
§ }h1

}8E|y ´ Z| (5.27)

which plugging in the first line of (5.3) shows
ˇ̌

fh(x)
ˇ̌

§ }h1
}8

ª 8

0
e´ y2

2 ´yx E|x + y ´ Z|dy (5.28)

Bounding (for x ° 0) E|x + y ´ Z| § x + |y| + E|Z|, we now check that the integral
is bounded uniformly in x P [0, 8). (Getting the precise numerical value needs more
work.) The proof of other inequalities more tedious; see Lemma 2.4 in “Normal approx-
imation by Stein’s method” by L.N.Y. Chen, L. Goldstein and Q.-M.Yao. ⇤

We are now ready for:
Proof of Theorem 5.7. Denote Y :=

∞n
k=1 Xk and set Yk := Y ´ Xk. Then EXk = 0 and

independence of Xk and Yk yield

E
�
Y f (Y)

�
=

nÿ

k=1

E
�
Xk f (Y)

�
=

nÿ

k=1

E
�
Xk[ f (Y) ´ f (Yk)]

�

=
nÿ

k=1

E
⇣

Xk
⇥

f (Y) ´ f (Yk) ´ (Y ´ Yk) f 1(Y)
⇤�

+ E
⇣

f 1(Y)
nÿ

k=1

X2
k

⌘ (5.29)
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Using Taylor’s theorem then gives
ˇ̌
ˇE
�

f 1(Y) ´ Y f (Y)
�ˇ̌
ˇ §

1
2

} f 2
}8

nÿ

k=1

E
�
|Xk|

3�+ } f 1
}8 E

ˇ̌
ˇ1 ´

nÿ

k=1

X2
k

ˇ̌
ˇ (5.30)

We will bound the term on the extreme right by way of the second moment. Indeed,
using the independence of X1, . . . , Xn we have

E
✓ˇ̌

ˇ1 ´

nÿ

k=1

X2
k

ˇ̌
ˇ
2
◆
= 1 ´ 2

nÿ

k=1

E(X2
k ) +

nÿ

k,`=1

E(X2
k X2

` )

=
nÿ

k=1

Var(X2
k ) +

✓
1 ´

nÿ

k=1

E(X2
k )

◆2

=
nÿ

k=1

Var(X2
k )

(5.31)

where we use that
∞n

k=1 E(X2
k ) = 1 in the last step. Invoking Stein’s ODE and the regu-

larity bounds (5.26),
ˇ̌
Eh(Y) ´ Eh(Z)

ˇ̌
=

ˇ̌
ˇE
�

f 1
h(Y) ´ Y fh(Y)

�ˇ̌
ˇ

§ }h1
}8

nÿ

k=1

E
�
|Xk|

3�+ }h1
}8

gffe
nÿ

k=1

Var(X2
k )

(5.32)

Optimizing over h P AC with }h1
}8 § 1 gives the claim ⇤

Applying Theorem 5.7 to i.i.d. random variables X1, . . . , Xn with X1 P L4 and EX1 = 0
turns (5.25) into

dW

✓
1

?
n

nÿ

k=1

, Z
◆

§
1

?
n

h
E(|X1|

3) +
b

Var(X2
1)
i

(5.33)

and so we again have a normal approximation up errors of order 1/
?

n, albeit now in
the Wasserstein distance. Using the example of Bernoulli random variables (or, in fact,
any integer-valued random variables) shows that also this is optimal since transporting
a measure that is supported on 1?

n Z to a measure that is continuously distributed with a
density that is uniformly positive over a non-trivial interval requires moving a positive
fraction of total mass mass over a distance at least order 1/

?
n.

Stein’s method is very flexible because it covers other distances (by choosing differ-
ent H) and even extends to other limit laws (which requires working with different Stein
operators A). In particular, one can prove Berry-Esseen type of estimates as well. The
argument in the proof of Theorem 5.7 even allows for some amount of dependence;
definitely, finite-range dependence. This refers to the situation when each Xk depends
on tXj : j P Jku where the maximal cardinality maxk§n |Jk| is bounded uniformly in n. We
then define Yk :=

∞
jRJk

Xj and proceed pretty much as before.

Further reading: L.N.Y. Chen, L. Goldstein and Q.-M.Yao, “Normal approximation by
Stein’s method”, Springer 2010
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6. NON-GAUSSIAN LIMIT LAWS

Having researched the conditions under which suitably centered and scaled sums of
independent random variables tend to a normal random variable, we now move to the
situations when the limit random variable is not Gaussian.

6.1 A warm-up example.

As a warm-up, we prove the following result which demonstrates existence of non-
gaussian limit laws. The result should be compared with the non-standard CLT in The-
orem 3.18 in which the parameter a below takes value 2.

Lemma 6.1 (Symmetric stable convergence) For each a P (0, 2) there exists a random vari-
able Ya with characteristic function

EeitYa = e´|t|a
, t P R, (6.1)

such that if X1, X2, . . . are i.i.d. with

X1
law
= ´X1 ^ @x ° 1 : P(|X1| ° x) = x´a (6.2)

then for Sn := X1 + ¨ ¨ ¨ + Xn we get
Sn

n1/a
w

›Ñ
nÑ8 caYa (6.3)

where ca := [a
≥8

0
1´cos x

xa+1 dx]1/a.

Proof. We have E(eitSn) = [E(eitX1)]n so we need a good representation of characteristic
function of X1:

E(eitX1) = E(cos(tX1))

= 1 ´ E
�
1 ´ cos(tX1)

�

= 1 ´ a

ª 8

1

1 ´ cos(tx)
xa+1 dx

= 1 ´ |t|a
ª 8

|t|
a

1 ´ cos(x)
xa+1 dx

looooooooooomooooooooooon
=:Ia(t)

(6.4)

Since 1 ´ cos(x) vanishes proportionally to! x2, the Monotone Convergence Theorem
shows that, for all a P (0, 2), we have Ia(t) Ñ Ia(0) P (0, 8) as t Ñ 0. Hence

E(eitSn/n1/a
) =

✓
1 ´

1
n

|t|a Ia(tn´1/a)

◆n

›Ñ
nÑ8 e´Ia(0)|t|a

(6.5)

The Lévy continuity theorem (Theorem 3.11) now gives that Ya exists and, noting that
ca = Ia(0)1/a, (6.3) holds. ⇤

Lemma 6.1 should be compared with the Marcinkiewicz-Zygmund’s SLLN (Theo-
rem 2.15) which ways that Sn/n1/a

Ñ 0 a.s. whenever E(Xa
1 ) † 8. This assumption

(and thus the conclusion) fails for the distribution in (6.2), albeit just marginally.
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We will later call Ya a “symmetric stable random variable with index a.” Some special
cases are easy to identify: Y1 is a Cauchy random variable, Y2 is N (0, 2). The random
variable Y1/2 is called “Lévy distributed” which reflects on the fact that its probability
density can be explicitly identified. (All other Ya have densities but they are inexplicit.)

6.2 Stable convergence.

Having discovered non-gaussian limit laws, we may ask: How general are these? More-
over, we are interested whether similar convergence can be established when the sym-
metry and pristine power-law tail assumption (6.2) is relaxed. In order to state the cor-
responding result, we need:

Definition 6.2 L : (0, 8) Ñ (0, 8) is said to be slowly varying at +8 if,

@x ° 0 : lim
tÑ8

L(xt)
L(t)

= 1 (6.6)

We remark that functions for which the limit exists for all x ° 0 (but is not necessarily
equal to 1) are called regularly varying. Scaling considerations then force the limit to take
the form xa for some exponent a. As is readily checked, every regularly varying function
is thus a power times a slowly varying function, so the above is all we need.

Here is our result on non-gaussian limit laws for sums of i.i.d. random variables:

Theorem 6.3 (Stable convergence) Let X1, X2, . . . be i.i.d. random variables such that for
some a P (0, 2) and q P [0, 1] the following holds:

(A) P(|X1| ° x) = x´aL(x) for L slowly varying at +8

(B) P(X1 ° x)/P(|X1| ° x) ›Ñ
xÑ8 q

Denote Sn := X1 + ¨ ¨ ¨ + Xn and set

an := inf
 

x ° 0 : nP(|X1| ° x) § 1
(

bn := nE
�
X11t|X1|§anu

� (6.7)

Then
Sn ´ bn

an

w
›Ñ
nÑ8 Y (6.8)

where Y is the random variable such that

E(eitY) = exp

# ª �
eitx

´ 1 ´ itx1[´1,1](x)
��

q1tx°0u + (1 ´ q)1tx†0u
� adx

|x|a+1

+
(6.9)

holds for all t P R.

The parameter a has the same meaning as earlier: it gives us the scaling exponent for
the decay of the tail of |X1|. The parameter q controls how much of the mass of X1 comes
from the positive part vs the negative part. Instead of (A) we could assume that both
x fiÑ P(X1 ° x) and x fiÑ P(X1 † ´x) are regularly varying, which implies P(X1 ° x) =
x´a1 L1(x) and P(X1 † ´x) = x´a2 L2(x) for L1, L2 slowly varying. The above would
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then hold with the choice a := minta1, a2u. (Part (B) would still have to be assumed. We
will have q = 1 if a1 † a2 and q = 0 if a1 ° a2.)

In order to justify the definition of an, we state and prove:

Lemma 6.4 Under assumption in Theorem 6.3,

nP(|X1| ° an) § 1 ^ nP(|X1| ° an) ›Ñ
nÑ8 1 (6.10)

Moreover, for each t ° 0,

nP(X1 ° tan) ›Ñ
nÑ8 qt´a

^ nP(X1 † ´tan) ›Ñ
nÑ8 (1 ´ q)t´a (6.11)

Proof. Let e ° 0. The right-continuity of t fiÑ P(|X1| ° t) along with definition of an give

nP(|X1| ° an) § 1 § nP(|X1| ° an ´ ean) (6.12)

By (A) in Theorem 6.3, the ratio of the right-hand side and the left hand side tends to
(1 ´ e)´a which can be made as close to one as desired. So nP(|X1| ° an) Ñ 1. Using
this along with (A-B) in Theorem 6.3 then gives also (6.11). ⇤

The formulas (6.10–6.11) explain the reason for defining an the way it is defined. In-
deed, we get that P(|X1| ° tan) is asymptotically of order 1/n so n independent attempts
for such an event will succeed at least ones with positive probability. More precisely, by
(6.10) the probability that at least one of X1, . . . , Xn exceeds exceed ean in absolute value
is asymptotically expressed as

1 ´
�
1 ´ P(|X1| ° ean)

�n
›Ñ
nÑ8 1 ´ e´ea

(6.13)

Note that the right-hand side tends to one as e Ó 0 and so, for e small, this is actually
very likely to occur.

In order to work with the tail probabilities P(|X1| ° tan), we need more than the mere
asymptotics (6.10–6.11). Indeed, as these will invariably appear under integration where
the fact that t fiÑ t´a diverges as t Ó 0 could cause problems, we also derive the following
hard upper bound:

Lemma 6.5 For each d ° 0 there are c ° 0 and t0 † 8 such that

@x P (0, 1] @t • t0 :
P(|X1| ° xt)
P(|X1| ° t)

§ cx´a´d (6.14)

Proof. By (A) we can find find t0 ° 0 so large that

@t • t0 :
P(|X1| ° t/2)
P(|X1| ° t)

§ 2a+d (6.15)

Given x P (0, 1], let n P Z be such that 2´n
§ x † 2´n+1. Then for any t • t0,

P(|X1| ° xt)
P(|X1| ° t)

§
P(|X1| ° 2´nt)

P(|X1| ° t)
=

P(|X1| ° 2´nt)
P(|X1| ° 2´kt)

k´1π

`=0

P(|X1| ° 2´`´1t)
P(|X1| ° 2´`t)

(6.16)
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where k := maxt0 § ` § n : 2´`t • t0u. By (6.15), each ratio in the product is at most 2a+d

which bounds the right-hand side by P(|X1| ° 2t0)´12k(a+d). Since 2k
§ 2n

§ 2x´1, the
claim follows. ⇤

6.3 Separation in “small” and “large” values.

The proof of Theorem 6.3 is based on the following idea. We use an as a “cutoff” scale
with “small values” designating those smaller than ean and “large values” marking
those that exceed ean. We will then show that the sum of the “small values” is asymp-
totically negligible (as n Ñ 8 and e Ó 0) while the sum of “large values” admits a weak
limit as n Ñ 8 which then also converges as e Ó 0. Note that this is quite unlike what
happened for CLT, where it was the small values that carried the bulk of the limiting
contribution.

In order to start implementing of the above strategy, pick e P (0, 1) (to be sent to zero
later) and, for each 1 § k § n set

Xn,k := Xk1t|Xk|§eanu. (6.17)

Let

Sn :=
nÿ

k=1

Xn,k (6.18)

We then have:

Lemma 6.6 (Small-value variance) For each d P (0, 2 ´ a) there is C † 8 such that

lim sup
nÑ8

Var
⇣Sn

an

⌘
§ Ce2´a´d (6.19)

Proof. By independence we have

Var
⇣Sn

an

⌘
§ nE

⇣X2
n,1

a2
n

⌘
§

n
a2

n

ª ean

0
2tP(|X1| ° t)dt

= n
ª e

0
2xP(|X1| ° xan)dx §

ª e

0
2cx1´a´ddx

(6.20)

where we used
P(|X1| ° xan) § cx´a´dnP(|X1| ° an) § cx´a´d (6.21)

as implied by Lemmas 6.5 and 6.4. ⇤
To account for “large values,” for each 1 § k § n set

pXn,k := Xk1t|Xk|°eanu (6.22)

and let

pSn :=
nÿ

k=1

pXn,k (6.23)

We then have:
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Lemma 6.7 (Large-value limit) For all e ° 0 and all t P R,

E(eit pSn/an) ›Ñ
nÑ8 exp

" ª �
eitx

´ 1
��

q1tx°eu + (1 ´ q)1tx†´eu
� adx

|x|a+1

*
(6.24)

In particular, pSn/an admits a weak limit

Proof. Define Borel measures µe,+
n and µe,´

n on R by

µe,˘
n (A) := nP

� pXn,1/an P A X R˘
�

(6.25)

While these measures are not probabilities, their total mass is bounded. Indeed, we have

µe,+
n (R) + µe,´

n (R) § nP(|X1| ° ean) ›Ñ
nÑ8 e´a. (6.26)

Next observe that, for x ° e,

µe,+
n ((´8, x]) = nP(ean † X1 § xan)

= nP(X1 ° ean) ´ nP(X1 ° xan)

›Ñ
nÑ8 q(e´a

´ x´a
�
=

ª

(´8,x]
q1tx°eu

adx
|x|a+1

(6.27)

and similarly for µe,´
n . It follows that

µe,+
n + µe,´

n
w

›Ñ
nÑ8

�
q1tx°eu + (1 ´ q)1tx†´eu

� a

|x|a+1 dx (6.28)

where dx stands for the Lebesgue measure on R.
To prove the claim we write

E(eit pSn/an) =

✓
1 +

nE(eitX̂n,1/an ´ 1)
n

◆n

(6.29)

and observe that that, by (6.28) and the fact that x fiÑ eitx
´ 1 is bounded and continuous,

nE(eitX̂n,1/an ´ 1) =
ª
(eitx

´ 1)
�
µe,+

n (dx) + µe,´
n (dx)

�

›Ñ
nÑ8

ª �
eitx

´ 1
��

q1tx°eu + (1 ´ q)1tx†´eu
� adx

|x|a+1

(6.30)

Plugging this in (6.29), we get the claim. ⇤
To demonstrate the power of these lemmas, we now give a proof of a simplified form

of the limit law in the case when a † 1:

Corollary 6.8 Suppose a P (0, 1). Then Sn/an
w

›Ñ rY where rY has the characteristic function

Eeit rY = exp
" ª �

eitx
´ 1
��

q1tx°0u + (1 ´ q)1tx†´0u
� adx

|x|a+1

*
(6.31)

In particular, the convergence holds even without centering by bn.
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Proof. The definitions imply

Sn = Sn + pSn = (Sn ´ ESn) + pSn + ESn (6.32)

Lemma 6.6 gives
Sn ´ ESn

an

L2
›Ñ

nÑ8, eÓ0
0 (6.33)

while Lemma 6.7 tells us
pSn

an

w
›Ñ
nÑ8

rYe (6.34)

where rYe is the random variable with the characteristic function on the right of (6.24).
Since the integral in that formula converges even after e Ó 0, we get

rYe
w

›Ñ
eÓ0

rY (6.35)

where rY is as in (6.31). We thus need to show

lim
eÓ0

lim sup
nÑ8

|ESn|

an
= 0 (6.36)

For this we pick d P (0, 1 ´ a) and compute

|ESn|

an
§

n
an

E
�
|Xn,1|

�
=

n
an

ª ean

0
P
�
|X1| ° t

�
dt

§

ª e

0
nP
�
|X1| ° xan

�
dx § c

ª e

0
x´a´ddx =

c
1 ´ a ´ d

e1´a´d

(6.37)

where we also invoked the bound in Lemma 6.5 and assumed that n is so large that
an • t0. This now readily gives (6.36). ⇤

6.4 Proof of stable convergence.

The proof of Corollary 6.8 highlights the issues that are left to be dealt with in order to
prove Theorem 6.3. These are

(1) rYe converges weakly as e Ó 0 for a P (0, 1) but not fo a • 1 in general because
x fiÑ (eitx

´ 1)x´a´1 is not Lebesgue-integrable near 0.
(2) ESn/an cannot be expected to converge as n Ñ 8 for a P [1, 2); check, e.g.

P(X1 • x) = x´a for x ° 1.
The centering by bn := nE(X11t|X1|§anu) solves these and gives us a proof that works
uniformly for all a P (0, 2). Noting that

bn ´ ESn = nE
� pXn,11t| pXn,1|§anu

�
(6.38)

all we need to do is to prove:

Lemma 6.9 (Centering term) For all e ° 0,
n
an

E
� pXn,11t| pXn,1|§anu

�
›Ñ
nÑ8

ª
x1[´1,1](x)

�
q1tx°eu + (1 ´ q)1tx†´eu

� adx
|x|a+1 (6.39)
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Proof. Using notation from Lemma 6.7,
n
an

E
� pXn,11t| pXn,1|§anu

�
=

ª
x1[´1,1](x)

�
µe,+

n (dx) + µe,´
n (dx)

�
(6.40)

Since x fiÑ x1[´1,1](x) is bounded and continuous Lebesgue a.e. the claim follows from a
straightforward approximation of 1[´1,1] by continuous functions. ⇤

We are now ready for:
Proof of Theorem 6.3. We just put together the facts proved earlier. First

Sn ´ bn

an
=

Sn ´ ESn

an
+

1
an

⇣
pSn ´ nE

� pXn,11t| pXn,1|§anu
�⌘

(6.41)

The above lemmas imply
Sn ´ ESn

an

P
›Ñ

nÑ8, eÓ0
0 (6.42)

and
1
an

⇣
pSn ´ nE

� pXn,11t| pXn,1|§anu
�⌘ w

›Ñ
nÑ8 Ye (6.43)

where Ye has the characteristic function

exp
" ª �

eitx
´ 1 ´ itx1[´1,1](x)

��
q1tx°eu + (1 ´ q)1tx†´eu

� adx
|x|a+1

*
(6.44)

Since x fiÑ eitx
´ 1 ´ itx1[´1,1](x) is bounded by a constant times x2 for x small, this now

allows taking e Ó 0 for all a P (0, 2). By the Lévy continuity theorem we get Ye
w

›Ñ Y
with Y having the characteristic function (6.9). ⇤

While the conditions (A-B) in Theorem 6.3 may appear rather special, they are actually
necessary. Indeed, assuming that (Sn ´ bn)/an converges weakly to a random variable
then either Y is normal and X1 P L2, or conditions (A-B) hold with some a P (0, 2). Proofs
of this result (and many other results) can be found in L. Breiman’s “Probability” which
is an ultimate reference for many facts about sums of independent random variables.

Further reading: Durrett, Section 3.8
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7. STABLE LAWS AND CONVERGENCE OF TYPES

In the previous lecture we noted a whole new family of possible limit laws for suitably
centered and normalized sums of i.i.d. random variables that lack second moments. In
this lecture we will characterize these limit laws in an intrinsic way that will later allow
us to show that, along with the normal laws that kick in when the second moment is
finite, these are all that one can get.

7.1 More on the limit formula.

Let a P (0, 2). In Theorem 6.3 we showed that suitably centered and normalized sums of
certain i.i.d. random variables with heavy, albeit regularly varying, tails that just barely
miss the a’th moment tend to a random variable Y with characteristic function

E
�
eitY� = exp

" ª �
eitx

´ 1 ´ itx1[´1,1](x)
��

q1tx°0u + (1 ´ q)1tx†0u
� adx

|x|a+1

*
(7.1)

A natural question is: Is there a better (read: non-integral) formula? A calculation that
we will not perform answers this affirmatively by producing a different expression

E
�
eitY� =

$
’&

’%

exp
!

itµ ´ sa
|t|a
�
1 ´ ibsign(t) tan

�
pa
2
��)

if a ‰ 1

exp
!

itµ ´ s|t|
�
1 ´ ibsign(t) 2

p log |t|
��)

if a = 1
(7.2)

This expression depends on four parameters that have the following names
‚ a = index of stability
‚ b = skewness (b := 2q ´ 1)
‚ s = scale
‚ µ = centering or shift

The notation for µ and s is done in analogy with the characteristic function

exp
"

itµ ´
1
2

s2t2
*

(7.3)

for the normal law with mean µ and variance s2. (Note that, except for the factor of 1
2 ,

(7.3) arises from (7.2) in the limit as a Ò 2 because t(pa
2 ) Ñ 0 in this case.) The skewness

tells us, roughly, how much mass is on the positive side relative to the negative side. The
extreme cases b = ˘1 are said to be totally skewed.

While we did not discuss this in the lecture, let us note some properties of the above
random variables. Let Sa(s, b, µ) be the random variable Y with characteristic func-
tion (7.2). Assuming Sa(s1, b1, µ1) and S1

a(s2, b2, µ2) to be independent, we then have

Sa(s1, b1, µ1) + S1
a(s2, b2, µ2)

law
= Sa(s, b, µ) (7.4)

where
sa := sa

1 + sa
2 , µ := µ1 + µ2 and b :=

sa
1 b1 + sa

2 b2

sa
1 + sa

2
(7.5)

Moreover,
Sa(s, b, µ)

law
= µ + Sa(s, b, 0) (7.6)
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and, for all c P R,

cSa(s, b, µ)
law
=

#
Sa(|c|s, sign(c)b, cµ) if a ‰ 1
Sa
�
|c|s, sign(c)b, cµ ´

2
p bc log |c|

�
if a = 1

(7.7)

In particular,

´Sa(s, b, µ)
law
= Sa(s, ´b, ´µ) (7.8)

The fact that the case a = 1 picks up an additional additive term under scaling indicates
that caution is needed in every use of the parameterization (7.2).

Let us also note some special cases that are worthy of attention. First observe that un-
der vanishing skewness, Sa(s, 0, µ) is a symmetric random variable with characteristic
function eitµ´sa|t|a . Next note that, for the normal variable

S2(s, b, µ) = N (µ,
?

2s2) (7.9)

skewness is irrelevant. Another special case is the Cauchy distribution,

S1(s, 0, µ)
law
= µ + sZ (7.10)

where Z is the “standard” Cauchy with probability density z fiÑ
1
p

1
1+z2 with respect to

the Lebesgue measure. This follows from

1
p

ª 8

´8

eitz

1 + z2 dz = e´|t| (7.11)

as computed using residue calculus. Note that this applies only for b = 0; the random
variable S1(s, b, µ) is not Cauchy when b ‰ 0.

Finally, the Lévy distribution S1/2(s, 1, µ) has probability density

x fiÑ

c
s

2p

1
(x ´ µ)3/2 e´ s

2(x´µ) 1(µ,8)(x) (7.12)

which is also known as the inverse-Gamma distribution.

7.2 Intrinsic characterization.

In spite of all the above developments, a question remains whether others laws besides
those we have identified so far can arise as weak limits of centered and scaled sums of
i.i.d. random variables. In order to answer this, we note an intrinsic property that any
such law has to satisfy:

Definition 7.1 Y is said to be stable if there are i.i.d. random variables Y1, Y2, . . . and

R-valued sequences tAnun•1 and tBnun•1 with @n • 1 : An ° 0 such that

@n • 1 : Y law
=

Y1 + ¨ ¨ ¨ + Yn

An
´ Bn (7.13)

We then state and prove:

Theorem 7.2 For any random variable Y, the following are equivalent:
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(1) there are i.i.d. random variables X1, X2, . . . and R-valued sequences tbnun•1 and tanun•1
with @n • 1 : an ° 0 such that

X1 + ¨ ¨ ¨ + Xn

an
´ bn

w
›Ñ
nÑ8 Y (7.14)

(2) Y is stable and the random variable Y1, Y2, . . . in (7.13) can be taken so that Y1
law
= Y.

Proof. The part (2) ñ (1) is immediate from the definition of a stable random variable.
Indeed, take X1

law
= Y1 and an := An and bn := Bn and note that the expression on the

left of (7.14) has the law of Y for all n • 1.
The proof of (1) ñ (2) is more complicated. Assume (1) and denote Sn = X1 + ¨ ¨ ¨+Xn.

Then (7.14) reads as

Zn :=
Sn

an
´ bn

w
›Ñ
nÑ8 Y (7.15)

Now pick k • 1 and note

Znk =
1

ank

kÿ

j=1

(Snj ´ Sn(j´1)) ´ bnk

=
an

ank

kÿ

j=1

⇣Snj ´ Sn(j´1)

an
´ bn

⌘

loooooooooooomoooooooooooon
=:Z(j)

n

+
⇣ kan

ank
bn ´ bnk

⌘ (7.16)

where Z(1)
n , . . . , Z(k)

n are i.i.d. copies of Zn. Since Zn
w

›Ñ Y, the sum Z(1)
n + ¨ ¨ ¨+ Z(k)

n tends
in law to the sum Y1 + ¨ ¨ ¨+YK of i.i.d. copies Y1, . . . , Yk of Y. (This is checked at the level
of characteristic functions.) The key problem is what happens with the sequences

! an

ank

)

n•1
and

"
kan

ank
bn ´ bnk

*

n•1
(7.17)

in this limit. Here we call upon:

Theorem 7.3 (Convergence of types) Suppose Xn
w

›Ñ X with X non-degenerate and let
an ° 0 and bn be real numbers such that anXn + bn

w
›Ñ Y for some Y non-degenerate. Then

there are a ° 0 and b P R such that
(1) an Ñ a ^ bn Ñ b

(2) Y law
= aX + b

Deferring the proof till later, we now observe that if Y is constant a.s., then it is stable, so
we may assume that Y is indeed non-degenerate. Theorem 7.3 then gives

DAk ° 0 DBk P R :
an

ank
›Ñ
nÑ8

1
Ak

^
kan

ank
bn ´ bnk ›Ñ

nÑ8 ´Bk (7.18)

and
Y law

=
Y1 + ¨ ¨ ¨ + Yk

Ak
´ Bk (7.19)
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where Y1, . . . , Yk are i.i.d. with law of Y, proving (2). ⇤

7.3 Proof of Convergence of Types.

The proof of Theorem 7.3 is based on manipulations with characteristic functions. We
start by noting:

Lemma 7.4 (Locally uniform convergence of ch.f.’s) If Xn
w

›Ñ X, then

@T ° 0 : sup
´T§t§T

ˇ̌
EeitXn ´ EeitX ˇ̌

›Ñ
nÑ8 0 (7.20)

In short, under weak convergence of r.v.’s, the associated ch.f.’s converge locally uniformly

Proof. By Skorohod representation (Theorem 3.4) we may assume Xn Ñ X a.s. Using
that |1 ´ e´ia

| = 2| sin(a/2)|, for each e P (0, 1) and t P [´T, T] we then have
ˇ̌
EeitXn ´ EeitX ˇ̌

§ 2E| sin(t(Xn ´ X)/2)|

§ 2P
�
|Xn ´ X| ° e/T

�
+ 2 sin(e/2)

(7.21)

Now take n Ñ 8 followed by e Ó 0. ⇤
The main benefit of the uniformity is that the characteristic functions converge even

if t in the characteristic function of Xn is replaced by tn such that tn Ñ t. This is quite
useful in approximation arguments.

Next we observe three properties whose proof we relegate to homework:

Lemma 7.5 Denote by jX(t) := E(eitX) the characteristic function of X. Then
(1) the statement Dd ° 0@t P (´d, d) : |jX(t)| = 1 implies that X is constant a.s.
(2) the statement

Dd ° 0 @t P (´d, d) : Re jXn(t) Ñ 1 (7.22)

implies Xn
P

Ñ 0
(3) the statement

Da P R r t+1, ´1u@t P R : |jX(at)| = |jX(t)| (7.23)

implies X is constant a.s.

We rush to add that other perhaps similar statements about characteristic functions
may fail. The most notable is that equality of two characteristic function on an open
subinterval of R does not imply their equality everywhere (and thus equality of the
associated laws). For the same reason it does not suffice to check convergence of charac-
teristic function on a subinterval of R, even if that contains the origin.

We are now ready to start:

Proof of Theorem 7.3. Assume Xn
w
Ñ X and anXn + bn

w
Ñ Y with X, Y non-degenerate

and an ° 0 for each n • 1. Write jZ(t) for the characteristic function of random vari-
able Z. We then have

janXn+bn(t) = eitbn jXn(ant) (7.24)
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and so the above convergences give

jXn(t) Ñ jX(t) ^ eitbn jXn(ant) Ñ jY(t) (7.25)

uniformly on compact sets of t. We now prove a series of claims.

Claim 1: 0 † infn•1 an § supn•1 an † 8

We proceed via argument by contradiction. If ank Ñ 0 along some sequence nk Ñ 8 then
the uniform convergence in the first limit in (7.25) implies |jXn(ank t)| Ñ |jX(0)| = 1.
But then the second limit in (7.25) gives |jY(t)| = 1 for all t P R which by Lemma 7.5
forces Y to be constant a.s., in contradiction with our assumptions.

Similarly, if ank Ñ 8 along some sequence nk Ñ 8, then taking t/an instead of t in
the second limit in (7.25) with the help of uniformity shows |jXn(t)| Ñ 1 for all t. Using
the first limit this again implies X is constant a.s., a contradiction.

Claim 2: lim
nÑ8 an exists and belongs to (0, 8)

The boundedness in Claim 1 permits us to consider two subsequential limits a and a1

of tanun•1. Claim 1 also ensures that a, a1
° 0. The uniformity of convergence in the

second limit in (7.25) implies
ˇ̌
jX(at)

ˇ̌
=

ˇ̌
jY(t)

ˇ̌
=

ˇ̌
jX(a

1t)
ˇ̌

(7.26)

and, since a, a1
° 0, we get |j(at)| = |j(t)| for a := a/a1

° 0 and all t P R. Lemma 7.5
along with non-degeneracy of X then imply a = a1.

Claim 3: supn•1 |bn| † 8

Abbreviate Yn := anXn + bn. For t small enough so that, e.g., infn•1 |jn(ant)| °
1
2 we

have uniform limits

eitbn =
jYn(t)

jXn(ant)
›Ñ
nÑ8

jY(t)
jX(at)

(7.27)

If |bnk | Ñ 8 we take this along the sequence tk := p/bnk which obeys tk Ñ 0. Thanks to
uniformity of the convergence, the left-hand side then tends to eip = ´1 yet the right-
hand side tends to 1, a contradiction.

Claim 4: lim
nÑ8 bn exists (in R)

Note that Claim 3 permits consideration of subsequential limits b and b1 of tbnun•1. The
identity (7.27) then gives

eitb =
jY(t)

jX(at)
= eitb1

(7.28)

for t in an open neighborhood of 0. This means that eit(b´b1) = 1 for t small. Taking
derivative at t = 0 we get b ´ b1 = 0, proving convergence.

Summarizing, we have shown that an Ñ a ° 0 and bn Ñ b and

@t P R : jY(t) = eitb jX(at) (7.29)

It follows that Y law
= aX + b. ⇤
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The upshot of Theorem 7.2 is that, in order to nail the limit laws of centered and
normalized sums of i.i.d. sequences, it suffices to characterize the stable laws. This boils
down to finding all random variables Y whose characteristic function jY is such that,
for each n • 1,

@t P R : e´itBn jY(t/An)
n = jY(t) (7.30)

holds with some An ° 0 and Bn P R. Some important facts about jY are relatively easy
to derive from this identity; for instance:

Lemma 7.6 Assume Y to be non-degenerate and such that (7.30) holds with some An ° 0 and
Bn P R for each n • 1. Then there exists a P (0, 2] such that

@n • 1 : An = n1/a (7.31)

and
Ds ° 0 @t P R :

ˇ̌
jY(t)

ˇ̌
= e´sa|t|a

(7.32)
Moreover, if a = 2 then Y is normal.

Finding a proof of this claim is instructive and so we relegate it to a homework assign-
ment. That being said, proving a full characterization of stable laws along these lines is a
pain. We will instead generalize the notion of stable random variables further and prove
a formula for its characteristic function in the next lecture.

Further reading: Durrett, Section 3.8
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8. INFINITELY DIVISIBLE LAWS

In this lecture we take the problem of characterizing limit laws associated with sums of
random variables a bit further, leading us to the concept of infinitely-divisible laws. We
then prove that these laws are characterized by the celebrated Lévy-Khinchin formula.

8.1 Definitions and main theorem.

Recall that Y is stable, or has a stable law, if there exists an i.i.d. sequence tYiui•1 of
random variables and two numerical sequences tAnun•1 and tBnun•1 with An ° 0 for
each n • 1 such that,

Y law
=

Y1 + ¨ ¨ ¨ + Yn

An
´ Bn (8.1)

holds for each n • 1. In Theorem 7.2 we then showed that the stable laws coincides with
the set of weak limits of random variables of the form

X1 + ¨ ¨ ¨ + Xn

an
´ bn (8.2)

for a sequence tXiui•1 of i.i.d. random variables and numerical sequences tanun•1 and
tbnun•1 with an positive for all n • 1.

Two remarks are in order. First, the characterization entails that the weak limit of (8.2)
actually exists. In particular, one cannot just assume tightness of random variables (8.2)
and try to apply the conclusion to subsequential limits. Second, it is important that the
same sequence tXiui•1 is used for each n. It is this requirement that we will now try to
relax. Consider the following definition:

Definition 8.1 A random variable Y is said to be infinitely divisible if for each n • 1
there exist i.i.d. random variables Yn,1, . . . , Yn,n such that

Y law
= Yn,1 + ¨ ¨ ¨ + Yn,n (8.3)

It is immediate from (8.1) that every stable random variable is infinitely divisible.
(This includes normal random variables as a special case.) But there are many random
variables that are infinitely divisible and not stable. For instance, since the sum of in-
dependent Poisson(l) and Poisson(µ) is Poisson(l + µ), Poisson random variables are
infinitely divisible. Other examples include Gamma random variables, log-normal (i.e.,
exponentials of a normal) random variables, c2-distribution, etc.

Here is the analogue of Theorem 7.2 for infinitely-divisible laws:

Theorem 8.2 A random variable Y is infinitely divisible if and only if there exist random
variables tXn,ju1§j§n such that

@n • 1 : Xn,1, . . . , Xn,n are i.i.d. (8.4)

and
Xn,1 + ¨ ¨ ¨ + Xn,n

w
›Ñ
nÑ8 Y (8.5)

(The law of Xn,1 can change with n.)
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Proof. The proof is similar to that of Theorem 7.2. That each infinitely divisible Y is a
limit of sums of i.i.d. random variables follows directly from (8.3), so our main job is to
prove the converse. Assume tXn,ju1§j§n are random variables such that (8.4–8.5) hold.
Abbreviate

Sn := Xn,1 + ¨ ¨ ¨ + Xn,n (8.6)

For any k • 1 we then have
Snk = Zn,1 + ¨ ¨ ¨ + Zn,k (8.7)

where

Zn,j :=
jnÿ

i=(j´1)n+1

Xn,i (8.8)

Note that Zn,1, . . . , Zn,k are i.i.d.
While Snk

w
›Ñ Y, unlike Theorem 7.2, here we cannot immediately conclude that the

random variables Zn,j converge as n Ñ 8. However, for each t ° 0 we get

P(Skn ° t) • P
✓ k£

j=1

tZn,j ° tu
◆
= P

�
Zn,1 ° t

�k (8.9)

The weak convergence of tSnun•1 implies tightness which means that, given any e ° 0,
the quantity on the left is less than ek once t is sufficiently large, uniformly in n • 1.
But then P(Z(k)

n,1 ° t) † e and, using a similar argument, also P(Z(k)
n,1 † t) † e for

all n • 1 once t is large. We conclude that tZn,1un•1 is tight. The Helly selection theorem
(Theorem 3.6) implies existence of a subsequence nj Ñ 8 such that Znj,1

w
›Ñ Z. But then,

as shown by an argument based on characteristic functions, (8.2) holds with Yn,1, . . . , Yn,n
i.i.d. copies of Z. It follows that Y is infinitely divisible. ⇤

To demonstrate the difference between Theorems 7.2 and Theorem 8.2 we reiterate
that while all stable laws arise from suitably centered and scaled sums of terms in one
i.i.d. sequence

X1, X2, X3, . . . (8.10)

all infinitely-divisible laws arise as weak limits of the laws of row sums of a triangular
array of the form

X1,1

X2,1, X2,2

X3,1, X3,2, X3,3

X4,1, X4,2, X4,3, X4,4

(8.11)

where the random variables in each row are assumed to be i.i.d. (Different rows may
not even be defined on the same probability space.)

With the above settled, we now give an analytic form of the characteristic function of
any infinitely divisible law:
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Theorem 8.3 (Lévy-Khinchin formula) A random variable X is infinitely divisible if and
only if there exist µ P R, s2

P [0, 8) and a finite Borel measure n on R with n(t0u) = 0 such
that for each t P R,

E(eitX) = exp

#
itµ ´

s2

2
t2 +

ª ⇣
eitx

´ 1 ´
itx

1 + x2

⌘1 + x2

x2 n(dx)

+
(8.12)

In particular, the exponential is a characteristic function for any choice of µ, s2 and n as above.
Moreover, the triplet (µ, s, n) with above properties is determined uniquely by (8.12).

A couple of remarks are in order. First, the function under the integral is bounded
and so the integral exists absolutely. Second, the measure

l(dx) :=
1 + x2

x2 n(dx) (8.13)

appearing under the integral is standardly called the Lévy measure. The conditions on n
are equivalent phrased by requiring that l(t0u) = 0 and

ª
x2

1 + x2 l(dx) † 8. (8.14)

We will see that the Lévy measure naturally arises in the proof.
Third, the first two terms in the exponent in (8.12) correspond to the characteristic

function eiµt´ 1
2 s2t2 of N (µ, s2) so each infinitely divisible is the sum of an independent

normal and a random variable whose characteristic function is exponent of the integral
— the “Lévy part.” As we will see in the proof of the “if” part of the statement, this part
corresponds to a compound Poisson law. Incidentally, as we will in the proof of the “only
if” part, the term 1

2 s2t2 can be reabsorbed to the integral by adding s2d0 to n. This is
because the integrand tends to ´t2/2 as x Ñ 0.

8.2 Manipulations with characteristic functions.

The proof of the “only if” part of Theorem 8.3 is based mainly on manipulations with
characteristic functions and (non-probability) measures on R although we often make
a step back to probability when that is more convenient for the argument. We start by
recalling two facts about characteristic functions, the first of which has already been
noted in (3.13) as a tool to prove tightness in Lévy’s continuity theorem (Theorem 3.11):

Lemma 8.4 There exists c P (0, 8) such that for all R ° 0 and all random variables Z with
characteristic function jZ(t) := E(eitZ),

P(|Z| ° R) § cR
ª 1/R

0

⇥
1 ´ Re jZ(t)

⇤
dt (8.15)
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Proof. Noting that Re jZ(t) = E(cos(tZ) and sin(u)/u § 1 holds for all u P R, we get

1
u

ª u

0
E
�
1´ cos(uZ)

�
du = E

⇣
1 ´

sin(uZ)
uZ

⌘

• E
✓
1tu|Z|•1u

⇣
1 ´

sin(uZ)
uZ

⌘◆
•


inf
s•1

⇣
1 ´

sin s
s

⌘�
P(u|Z| • 1)

(8.16)

Writing c´1 for the square bracket, the claim follows by setting u := 1/R. ⇤
We will also need:

Lemma 8.5 Suppose Z is a random variable with Re jZ(t) = 1 + o(t2) as t Ñ 0; i.e.,

lim
tÑ0

1 ´ Re jZ(t)
t2 = 0 (8.17)

Then Z = 0 a.s.

Proof. Using Fatou’s lemma we have

lim
tÑ0

1 ´ Re jZ(t)
t2 = lim

tÑ0
E
✓

1 ´ cos(tZ)
t2

◆
•

1
2

E(Z2) (8.18)

Since the left-hand side vanishes, we have E(Z2) = 0 which implies Z = 0 a.s. ⇤
Suppose now that X is infinitely divisible and, for each n • 1, let Xn,1, . . . , Xn,n be i.i.d.

random variables such that
X law

= Xn,1 + ¨ ¨ ¨ + Xn,n (8.19)
Set

j(t) := EeitX and jn(t) := EeitXn,1 (8.20)
and note that (8.19) translates into

@t P R : j(t) = jn(t)n (8.21)

We now move to a key technical observation:

Lemma 8.6 We have Xn,1
P

›Ñ
nÑ8 0 and so jn(t) ›Ñ

nÑ8 1 locally uniformly in t P R.

Proof. Continuity of j along with j(0) = 1 ensure existence of a number d ° 0 such
that Re j(t) • 1/2 for all t P [´d, d]. We claim that then

@t P [´d, d] : Re jn(t) °

ˇ̌
jn(t)

ˇ̌
cos
�

p
2n
�

(8.22)

Indeed, suppose for the sake of contradiction that this fails at some t‹ P [´d, d]. Using
continuity we may assume that t‹ has the smallest absolute among all points with this
property. But then, again by continuity, equality holds at t‹. This gives

jn(t‹) =
ˇ̌
jn(t‹)

ˇ̌
e˘i p

2n i (8.23)

But then (8.21) implies j(t‹) = |jn(t‹)|ne˘ p
2 i = ˘i|jn(t‹)|n which is purely imaginary,

in contradiction with Re j(t‹) • 1/2.
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With (8.22) in hand, the fact that |jn(t)| = |j(t)|1/n gives

Re jn(t) • 2´1/n cos
�

p
2n
�

›Ñ
nÑ8 1 (8.24)

for all t P [´d, d]. Invoking Lemma 7.5(2) we get Xn,1 Ñ 0 in probability and, by
Lemma 7.4, also jn(t) Ñ 1 locally uniformly in t P R. ⇤

Next we establish a number of important consequences of the previous lemma. The
proof of these involves non-trivial facts from complex analysis.

Corollary 8.7 The following holds:
(1) j(t) ‰ 0 and jn(t) ‰ 0 for every t P R and n • 1
(2) there exist continuous functions t fiÑ log j(t) and, for each n • 1, also t fiÑ log jn(t)

such that, for all n • 1 and t P R,

log j(t) = n log jn(t) (8.25)

and
j(t) = exptlog j(t)u and jn(t) = exptlog jn(t)u (8.26)

where exp(z) :=
∞

k•1
1
k! z

k is the complex exponential
(3) we have

n
�

jn(t) ´ 1
�

›Ñ
nÑ8 log j(t) (8.27)

locally uniformly in t P R, and
(4) there exists a continuous function t fiÑ en(t) such that for all t P R

j(t) = exp
!�

1 + en(t)
�
n
�

jn(t) ´ 1
�)

(8.28)

with en(t) Ñ 0 as n Ñ 8 locally uniformly in t.

Proof. (1) If j(t) = 0 or jm(t) = 0 for some t P R and m • 1, then jn(t) = 0 for all n • 1
contradicting that jn(t) Ñ 1.
(2) By part (1), the image of t fiÑ j(t) is a continuous curve in C r t0u. Let G(t) be the
portion of this curve for the argument ranging from 0 to t and let

log j(t) :=
ª

G(t)

dz
z

(8.29)

Here the (Stieltjes or curve) integral exists regardless of whether G(t) is rectifiable or not
thanks to the fact that, by Cauchy’s theorem in complex analysis, any piece-wise linear
approximation to G(t) that stays close enough to G(t) has the same value of the integral.
This also guarantees that, at t ° t0 • 0 such that |j(u)´ j(t0)| † |j(t0)| for all u P [t0, t],
it suffices to compute the integral by going along any path from j(t0) to j(t) that does
not leave the open disc of radius |j(t0)| centered at j(t0).

Writing j(t) = j(t0)(1 + reiq) for r P [0, 1) and q P [0, 2p), we choose to go along the
linear segment parametrized by z(u) := j(t0)(1 + ueiq) for u P [0, r]. This gives

log j(t) ´ log j(t0) =
ª r

0

eiqdu
1 + ueiq (8.30)
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Using that r † 1, we can expand the function in the integral into a power series in u and
integrate term-by-term to get

log j(t) ´ log j(t0) =
8ÿ

n=0

(´reiq)n+1

n + 1
(8.31)

The right-hand side is now recognized as the power series representing z fiÑ log(1 ´ z)
whose exponential thus equals 1 ´ z. Plugging z := ´reiq yields

exp
 

log j(t)
(
= exp

 
log j(t0)

(
(1 + reiq) = exp

 
log j(t0)

( j(t)
j(t0)

(8.32)

Proceeding along the curve t fiÑ j(t) we thus verify (8.26) for j. The proof for jn is
completely analogous.

Writing Gn(t) for the curve defined by s fiÑ jn(s) for s ranging from 0 to t, we define
log jn(t) similarly as (8.29). Using that the substitution w := zn takes Gn(t) to G(t), we
have

log j(t) =
ª

G(t)

dw
w

w:=zn
=

ª

Gn(t)

zn´1dz
zn = n log jn(t) (8.33)

proving (8.25).
(3-4) Let g be the function on tz P C : |z| † 1u defined by g(0) := 0 and

g(z) :=
log(1 + z) ´ z

z
, z ‰ 0 (8.34)

Note that g is holomorphic with g(z) = O(|z|) as z Ñ 0. Define

en(t) :=

$
’&

’%

g
�

jn(t) ´ 1
�
, if |j(t) ´ 1| § 1/2

log jn(t)
jn(t) ´ 1

´ 1, else
(8.35)

Since both formulas give the same when 0 † |j(t)´ 1| † 1, the function en is continuous
with en(t) = O(|jn(t) ´ 1|) when |jn(t) ´ 1| is small. Expressing the logarithm of jn(t)
from these formulas while invoking (8.25) shows

log j(t) = n log jn(t) =
�
1 + en(t)

�
n
�

jn(t) ´ 1
�

(8.36)

which gives (8.28) with the help of (8.26). Since jn(t) Ñ 0 and thus also en(t) Ñ 0 locally
uniformly in t, we then also get (8.27). ⇤

8.3 Proof of the Lévy-Khinchin formula.

We are now ready to commence the proof of the “only if” part of Theorem 8.3; specifi-
cally, the claim that every infinitely divisible law has characteristic function (8.12). Fol-
lowing similar arguments as for stable laws, define a Borel measure ln by

ln(A) := nP(Xn,1 P A) (8.37)

Then
n
�

jn(t) ´ 1
�
=

ª
(eitx

´ 1)ln(dx) (8.38)
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Next observe:

Lemma 8.8 There is c † 8 such that for each R ° 0,

lim sup
nÑ8

ln
�
(´R, R)c�

§ cR
ª 1/R

0
log

1
|j(t)|

dt (8.39)

Proof. The argument in the proof of Lemma 8.4 gives

ln
�
(´R, R)c�

§ cR
ª 1/R

0
n
�
1 ´ Re jn(t)

�
dt (8.40)

By Corollary 8.7 the integrand is continuous and tends to

´Re log j(t) = log
1

|j(t)|
(8.41)

uniformly on compact sets, and so the integral converges to that in the statement. ⇤
The reader may be surprised by the above lemma for the following reason. The total

mass of ln is ln(R) = n so if the mass outside any compact interval stays bounded,
where did the rest of the mass go? The answer is that it has “collapsed” to zero. To
control the amount of mass near zero, we also need:

Lemma 8.9 (Mass near zero)

lim sup
nÑ8

ª

[´1,1]
x2 ln(dx) † 8 (8.42)

Proof. Noting that c1 := inf|u|§1
1´cos(u)

u2 ° 0 we have

n
�
1 ´ Re jn(1)

�
= nE

�
1 ´ cos(Xn,1)

�

• nE
�
1t|Xn,1|§1u

�
1 ´ cos(Xn,1)

�

• nE
�
c1X2

n,11t|Xn,1|§1u
�
= c1

ª

[´1,1]
x2 ln(dx)

(8.43)

By Corollary 8.7, the left-hand side converges to log 1/|j(1)|. ⇤
We are now ready for:

Proof of “only if” in Theorem 8.3. Define a Borel measure nn by

nn(dx) :=
x2

1 + x2 ln(dx) (8.44)

Lemmas 8.8 and 8.9 show that tnnun•1 is tight on R with supn•1 nn(R) † 8 so, by Helly’s
selection theorem, there exists a sequence nk Ñ 8 and a finite Borel measure ñ on R such
that nnk

w
Ñ ñ. Write

n
�

jn(t) ´ 1
�
=

ª
(eitx

´ 1)
1 + x2

x2 nn(dx)

=
ª ⇣

eitx
´ 1 ´

itx
1 + x2

⌘1 + x2

x2 nn(dx) + it
ª

x
1 + x2 ln(dx)

(8.45)
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Noting that the first integrand is bounded and continuous (including x = 0 where it is
interpreted in a limit sense), the first integral converges to that with respect to ñ. Since
the left-hand side converges to log j(t) by Corollary 8.7, the limit in

µ := lim
kÑ8

ª
x

1 + x2 lnk(dx) (8.46)

must exists and we have

log j(t) = itµ +
ª ⇣

eitx
´ 1 ´

itx
1 + x2

⌘1 + x2

x2 ñ(dx) (8.47)

Note that s2 := ñ(t0u) may be non-zero due to “collapse of mass to 0” in which case we
interpret the integrand by its limit value ´

1
2 t2 at x = 0. Letting

n := ñ ´ s2d0 (8.48)

gives

log j(t) = itµ ´
1
2

t2s2 +
ª ⇣

eitx
´ 1 ´

itx
1 + x2

⌘1 + x2

x2 n(dx) (8.49)

where n(t0u) = 0. Plugging this in (8.26), we get the Lévy-Khinchin formula. ⇤
In order to finish the proof of Theorem 8.3 we have to prove the converse and also

show uniqueness of the triplet (µ, s2, n). This will be done in the next lecture.

Remark 8.10 An interesting question that springs to mind is what happens if we only
assume subsequential convergence of sums of i.i.d. random variables? This is equivalent
to asking: What are all possible laws of Y such that, for a family of random variables

 
Xn,j : n • 1, j = 1, . . . , k(n)

(
(8.50)

with k(n) Ñ 8 and
@n • 1 : Xn,1, . . . , Xn,k(n) are i.i.d. (8.51)

we have
Xn,1 + ¨ ¨ ¨ + Xn,k(n)

w
›Ñ
nÑ8 Y (8.52)

As it turns out, the answer is simple: Y still has to be infinitely divisible, but the proof
requires going via the arguments for Theorem 8.3.

Indeed, denoting jn(t) := EeitXn,1 , we first note that, as in Lemma 8.6, thanks to
k(n) Ñ 8 we must have

Xn,1
P

›Ñ
nÑ8 0 and so jn(t) ›Ñ

nÑ8 1 locally uniformly in t P R (8.53)

Since jn(t)k(n)
Ñ j(t), this implies j(t) ‰ 0 for all t P R and so, by the argument in

Corollary 8.7, t fiÑ log j(t) is well defined and

k(n)
�

jn(t) ´ 1
�

›Ñ
nÑ8 log j(t) (8.54)

locally uniformly in t P R. Checking the proof of the “only if” part of Theorem 8.3, this
is all what we ever needed there.

Preliminary version (subject to change anytime!) Typeset: April 7, 2025



MATH 275B notes 58

8.4 Proof of “if” part of Theorem 8.3.

We now move to the proof of the converse; namely, the statement that a random variable
with characteristic function in (8.12) is infinitely divisible. The bulk of the argument boils
down to proving that the formula in (8.12) is actually a characteristic function for any
choice of the “parameters” µ, s2 and n. The key step for this comes in:

Lemma 8.11 For all finite Borel measures n on R, there exists a random variable Z such that

EeitZ =

"ª ⇣
eitx

´ 1 ´
itx

1 + x2

⌘1 + x2

x2 n(dx)
*

(8.55)

holds for all t P R.

Proof. If n = 0 then we set Z := 0 and so let us assume that n is non-trivial in the sequel.
Define a Borel measure l by

l(dx) :=
1 + x2

x2 n(dx) (8.56)

and, for e ° 0, let
le(dx) := 1[´e,e]c(x)l(dx) (8.57)

be its restriction to the complement of (´e, e). Define also

µe :=
ª

x
1 + x2 le(dx) (8.58)

where the integral exists since le(R) † 8.
Next, assuming e ° 0 so small that le(R) ° 0, let Y1, Y2, . . . be i.i.d. random variables

with law determined by

P(Y1 P A) :=
le(A)
le(R)

(8.59)

and let Ne be Poisson (le(R)), independent of the Yi’s. Denote

Ze := ´µe +
Neÿ

j=1

Yj (8.60)

In order to compute the characteristic function of Ze, write je(t) := E(eitY1). Then

E(eitZe) = e´itµe E
⇣⇥

je(t)
⇤Ne
⌘

= e´itµe

8ÿ

n=0

le(R)n

n!
e´le(R)je(t)n

= exp
!

le(R)
�

je(t) ´ 1
�

´ itµe

)
(8.61)

Noting that

le(R)
�

je(t) ´ 1
�
=

ª
(eitx

´ 1)le(dx) (8.62)
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we conclude that
E(eitZe) = exptIe(t)u (8.63)

where

Ie(t) :=
ª

[´e,e]c

⇣
eitx

´ 1 ´
itx

1 + x2

⌘ 1 + x2

x2 n(dx) (8.64)

The integrand is bounded uniformly in e ° 0 and so, since n(t0u) = 0, we get

Ie(t) ›Ñ
eÓ0

I0(t) :=
ª

t0uc

⇣
eitx

´ 1 ´
itx

1 + x2

⌘1 + x2

x2 n(dx) (8.65)

by the Bounded Convergence Theorem. The Lévy continuity theorem then implies
Ze

w
›Ñ Z1 where EeitZ1

= exptI0(t)u. Taking Z := Z1 + X where X = N (0, n(t0u))
is independent of Z1 gives a random variable satisfying (8.55). ⇤

We are now ready to give:
Proof of “if” part of Theorem 8.3. Let µ, s2 and n be as in the statement. In the previous
lemma we constructed a random variable Z with characteristic function (8.55). Adding
to Z an independent copy of N (µ, s2) results in a random variable X with characteristic
function in (8.12). Note that, given any k • 1, the same construction with µ, s2 and n
divided by k produces a random variable Y such that

@t P R : EetX =
�
EetY�k (8.66)

Since characteristic function determines the law, we get

X law
= Y1 + ¨ ¨ ¨ + Yk (8.67)

for Y1, . . . , Yk independent copies of Y. It follows that X is infinitely divisible, proving
the “if” part of the statement. ⇤

It remains to prove uniqueness of (µ, s2, n) subject to the condition n(t0u) = 0, which
we leave to a homework assignment. The same applies to the proof of the following
special case of Theorem 8.3:

Theorem 8.12 (Kolmogorov’s theorem) Suppose X P L2 and EX = 0. Then X is infinitely
divisible if and only if there is a finite Borel measure µ such that

E(eitX) = exp
"ª

eitx
´ 1 ´ itx

x2 µ(dx)
*

(8.68)

Moreover, µ(R) = Var(X).

Further reading: Durrett, Section 3.8 and references therein
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9. POISSON CONVERGENCE AND PROCESSES

The construction underlying the proof of the “if” part of Theorem 8.3 brings us to a
connection with Poisson random variables and, specifically, the notion of the Poisson
point process. This is the subject we will explore in this lecture.

9.1 Poisson convergence.

As the reader likely knows from undergraduate probability courses, Poisson random
variables arise as limits of Binomial random variables. Here is a precise statement of
this fact which goes back to S.D. Poisson’s work from 1837 (although, per wiki page,
A. de Moivre already published it in 1711).

Lemma 9.1 For each n • 1, let Xn,1, . . . , Xn,n be i.i.d. t0, 1u-valued random variables with
P(Xn,i = 1) = ln. Let Sn := Xn,1 + ¨ ¨ ¨ + Xn,n and suppose that nln Ñ l P (0, 8). Then

@k • 0 : P(Sn = k) ›Ñ
nÑ8

lk

k!
e´l (9.1)

Proof. Since Sn is Binomial with parameters n and ln, for 0 § k § n we have

P(Sn = k) =
✓

n
k

◆
lk

n(1 ´ ln)
n´k

=
1
k!

n(n ´ 1) . . . (n ´ k + 1)
nk (nln)

k
✓

1 ´
nln

n

◆n´k (9.2)

For k fixed and n Ñ 8 we have (nln)k
Ñ lk and (1 ´

nln
n )n´k

Ñ e´l. Since the large
fraction tends to 1, the claim follows. ⇤

Definition 9.2 Let l • 0. A random variable N is said to be Poisson with parameter l

of N takes values in non-negative integers and P(N = k) = lk

k! e´l
holds for all k • 0.

Note that while the convergence (9.1) is phrased for each k, it is actually uniform.
Indeed, (9.2) gives

ÿ

k•k0

P(Sn = k) §

ÿ

k•k0

(nln)k

k!
e´nln §

(nln)k0

k0!
§

1
k0!

[sup
n•1

nln]
k0 (9.3)

where we used that 1 ´ a § e´a and k! • k0!(k ´ k0)!. Now observe that right-hand side
can be made as small as desired by taking k0 large.

As it turns out, even a stronger estimate holds:

Theorem 9.3 (Le Cam, 1960) Let n • 1 and let X1, . . . , Xn be independent t0, 1u-valued
random variables. Set Sn = X1 + ¨ ¨ ¨ + Xn and denote pi := P(Xi = 1). Abbreviate l :=
p1 + ¨ ¨ ¨ + pn. Then

ÿ

k•0

ˇ̌
ˇ̌ P(Sn = k) ´

lk

k!
e´l

ˇ̌
ˇ̌ § 2

nÿ

i=1

p2
i § 2l max

i=1,...,n
pi (9.4)
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The proof uses a number of small observations that are of independent interest. We
start by noting that the total variational distance between two random variables XS
and Y taking values in a measurable space (X ,G) can be written as

dTV(X, Y) = sup
APG

ˇ̌
P(X P A) ´ P(Y P A)

ˇ̌
(9.5)

For X and Y taking values in N this simplifies as

dTV(X, Y) = sup
AÑN

ˇ̌
ˇ̌

ÿ

kPA

⇥
P(X = k) ´ P(Y = k)

⇤ˇ̌ˇ̌

=
ÿ

kPN

�
P(X = k) ´ P(Y = k)

�+
=

ÿ

kPN

�
P(X = k) ´ P(Y = k)

�´

=
1
2

ÿ

kPN

ˇ̌
P(X = k) ´ P(Y = k)

ˇ̌

(9.6)

Here we observed that the sum over k P A can be written as the sum over k where
P(X P A) ´ P(Y P A) • 0 and the sum over where P(X P A) ´ P(Y P A) § 0. The latter
is negative so dropping one of the two would only increase the result. It follows that an
optimal A is A := tk P N : P(X = k) • P(Y = k)u as well as the complement thereof.
This gives the second line. The third line is obtained by noting that |a| = a+ + a´.

In summary, the total variational distance of two discrete-valued random variables
(over the same set of values) is half of the `1-distance of their probability mass functions.
Next we observe:

Lemma 9.4 For each l • 0, Poisson(l)-random variable is infinitely divisible. In fact,

@l, µ • 0 : Poisson(l + µ)
law
= Poisson(l) ‘ Poisson(µ) (9.7)

where “‘” denotes sum of independent random variables.

Proof. Infinite divisibility is immediate from the distributional convergence in Lemma 9.1
and the argument in (7.16). Alternatively, we just prove (9.7) which is done by writing
explicitly the probability mass function of the quantity on the right and reducing it using
the Binomial Theorem. ⇤

Let Y1, . . . , Yn be independent with Yi = Poisson(pi). Then Y1 + ¨ ¨ ¨+Yn is Poisson(l)
and, using (9.6) and (9.7), Le Cam’s inequality (9.4) can be phrased as

dTV

✓ nÿ

i=1

Xi,
nÿ

i=1

Yi

◆
§

nÿ

i=1

p2
i (9.8)

In order to prove this, we first show:

Lemma 9.5 Suppose X1, . . . , Xn and Y1, . . . , Yn are independent (normed-vector-space-valued)
random variables. Then

dTV

✓ nÿ

i=1

Xi,
nÿ

i=1

Yi

◆
§

nÿ

i=1

dTV(Xi, Yi) (9.9)
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Proof. We will proceed by induction but for that we need to make the following obser-
vation. Let X, Y and Z be independent random variables taking values in a linear vector
space X endowed with a s-algebra G. Then for each A P G,

P(X + Z P A)´P(Y + Z P A)

§

ª
µZ(dz)

⇥
P(X P ´z + A) ´ P(Y P ´z + A)

⇤

§ dTV(X, Y)

(9.10)

where we used independence to write the probabilities as integrals with respect to dis-
tribution µZ of Z and then applied (9.5) to the integrand. A similar argument bounds
the quantity by ´dTV(X, Y) from below and so we get

dTV(X + Z, Y + Z) § dTV(X, Y) (9.11)

whenever X, Y and Z are independent.
Consider now the setting of the lemma and, for each j = 0, . . . , n, denote

Zj :=
jÿ

i=1

Yi +
nÿ

i=j+1

Xi (9.12)

Then
∞n

j=1 Xj = Z0 and
∞n

j=1 Yj = Zn and so, by the triangle inequality for the total-
variational distance

dTV

✓ nÿ

i=1

Xi,
nÿ

i=1

Yi

◆
= dTV(Z0, Zn) §

nÿ

j=1

dTV
�
Zj´1, Zj) (9.13)

But writing rZj :=
∞j´1

i=1 Yi +
∞n

i=j+1 Xi, we have Zj´1 = Xj + rZj and Zj = Yj + rZj and so

dTV
�
Zj´1, Zj) = dTV

�
Xj + rZj, Yj + rZj) § dTV(Xj, Yj) (9.14)

using (9.11) and the fact that rZj, Xj and Yj are independent. ⇤
We are now ready to give:

Proof of Theorem 9.3. Using the previous reasoning, our goal is to prove (9.8) which
using Lemma 9.5 reduces to the bound on dTV(X, Y), where X is Bernoulli with param-
eter p and Y is Poisson with parameter p. Here we observe the following facts:

(1) P(X = 0) = 1 ´ p § e´p = P(Y = 0)
(2) P(X = 1) = p • pe´p = P(Y = 1)
(3) P(X = k) = 0 § P(Y = k) for k • 2

It follows that P(X = k) ´ P(Y = k) is positive only for k = 1 where

P(X = 1) ´ P(Y = 1) = p ´ pe´p = p(1 ´ e´p) § p2 (9.15)

Relying on the middle line in (9.6), this shows dTV(X, Y) § p2 proving the claim. ⇤
The second part of Le Cam’s inequality (9.4) indicates the conditions under which one

expects the approximation by the Poisson random variable to be accurate: mini=1,...,n pi
has to be small. Since

∞n
i=1 pi is fixed to l, this can hardly be achieved without tak-

ing n Ñ 8 and so Poisson convergence arises when (and, in fact, whenever) we count
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occurrences of a large number of independent small-probability events. Sometimes this
principle is described by the phrase “law of small numbers.”

While independence has been crucial in above proofs, there are ways to work with
dependent events. However, the corresponding statement requires the notion of condi-
tional probability that we have not covered yet, so we leave it to a later discussion.

Remark 9.6 Note that the weak convergence Yn
w

›Ñ Poisson(l) is reflected at the level
of characteristic functions as follows

EeitYn ›Ñ
nÑ8

8ÿ

k=0

lk

k!
e´leitn = exp

 
l(eit

´ 1)
(

, t P R (9.16)

If only non-negative random variables are involved, we can also phrase it using the
Laplace transforms as

Ee´tYn ›Ñ
nÑ8

8ÿ

k=0

lk

k!
e´le´tn = exp

 
´l(1 ´ e´t)

(
, t • 0 (9.17)

Thus, whenever we encounter the expression of the form (eit
´ 1), resp., (1 ´ e´t) in the

exponent of a characteristic function, resp., a moment generating function, we should
suspect a Poisson random variable at play.

9.2 Poisson processes.

Thanks to the “law of small numbers” principle, Poisson random variables play a fun-
damental role in modeling of physical phenomena. The standard examples include the
number of atoms of radioactive material that decayed over a given time period, the num-
ber of customers in a queue or the number of rainy days in a place with dry climate. The
modeling context usually involves the flow of time which naturally leads to:

Lemma 9.7 Let l ° 0 and let tTiui•1 be i.i.d. Exponential with parameter l. (This means
ETi = l.) For each t • 0 set

Nt := max
"

k • 0 :
kÿ

i=1

Ti § t
*

(9.18)

with the proviso Nt := +8 when
∞8

i=1 Ti § t. Then

@k • 1 @0 = t0 † t1 † ¨ ¨ ¨ † tk : tNti ´ Nti´1u
k
i=1 are independent (9.19)

and
@t • s • 0 : Nt ´ Ns

law
= Poisson

�
l(t ´ s)

�
(9.20)

Moreover, t fiÑ Nt is right-continuous with left-limits a.s.

Proof (hint). We leave the proof of this to a homework assignment subject to the follow-
ing hint: Discretize the “time axis” to tk/n : k • 0u and let tXkuk•0 be Bernoulli with
parameter l/n. Let K1, K2, . . . enumerate the set tk • 0 : Xk = 1u increasingly. Then
Kj ´ Kj´1 are independent Geometric with parameter l/n and so tn´1(Kj ´ Kj´1)ui•1
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tends in distribution to tTiui•1. Letting Nn
t be the largest j such that Kj/n § t, the incre-

ments of the process t fiÑ Nn
t are independent with Nn

t ´ Nn
s Binomial with parameter

n(t ´ s)˘ 1 and l/n and, using Lemma 9.1, Nn
t ´ Nn

s thus tends to Poisson(l(t ´ s)). ⇤
We remark that proofs of the above exist that do not involve discretization but rather

rely on the so called memoryless property of the exponential distribution. We find the
argument via discretization far more illuminating.

Definition 9.8 The process tNt : t • 0u with the properties as stated in Lemma 9.7 is

called the homogenous rate-l Poisson process.

As it turns out the phrase “Poisson process” is actually tied to another object that, in
fact, subsumes the one defined above. We go straight to:

Definition 9.9 Let (X ,G, µ) be a measure space. A Poisson point process with inten-
sity µ is (to be abbreviated as PPP(µ)) is a random measure q on (X ,G) such that

(1) @k P N @A1, . . . , Ak P G :

A1, . . . , Ak disjoint ñ q(A1), . . . , q(Ak) independent (9.21)

(2) @A P G : q(A) is Poisson with parameter µ(A)

Here Poisson(8) := 8 a.s.

Note that a random measure on (X ,G) is a measure-valued random variable which,
technically, is a map W Ñ M, where (W,F , P) is a probability space and

M :=
 

q : measure on (X ,G)
(

(9.22)

We usually endow this space with the minimal s-algebra

s

✓ 
µ P M : µ(A) P B

(
: A P G, B P B(R)

◆
(9.23)

that makes q(A) measurable (and hence an R+ Y t+8u-valued random variable) for
each A P G. For each w P W, the realization q(w, ¨) is then a measure in the second
coordinate such that w fiÑ q(w, A) is measurable for each A P G.

The PPP(µ) will hardly be interesting unless there is a good number of finite µ-
measure sets. As it turns out, this is all we need to ensure its existence:

Theorem 9.10 Let µ be a s-finite. Then PPP(µ) exists and is s-finite a.s.

The proof will require a tool from the theory of multivariate distributions:

Lemma 9.11 Let X1, . . . , Xn and Y1, . . . , Yn be real-valued random variables such that

@t1, . . . , tn P R : E
�
ei

∞k
j=1 tjXj

�
= E

�
ei

∞k
j=1 tjYj

�
(9.24)

Then
(X1, . . . , Xn)

law
= (Y1, . . . , Yn) (9.25)

in the sense of equality of probability measures on Rn.

Preliminary version (subject to change anytime!) Typeset: April 7, 2025



65 MATH 275B notes

Proof. Denote the function on the left of (9.24) by jX(t1, . . . , tn). The multivariate ver-
sion of the inversion formula in Theorem 3.10 shows that, for any collection of numbers
a1, . . . , an, b1, . . . , bn P R with ai † bi for all i = 1, . . . , n,

lim
TÑ8

1
pn

ª

[´T,T]n
jX(t1, . . . , tn)

nπ

j=1

e´itjaj ´ e´itjbj

itj
dt1 . . . dtn

= E

 
nπ

j=1


1
2

1[aj,bj](Xj) +
1
2

1(aj,bj)(Xj)

�! (9.26)

Taking aj Ñ ´8 and restricting each bj to stay away from the (at most countable) set
tXj P R : P(Xi = x) ° 0u, the right-hand side of (9.26) becomes P(

ìn
j=1tXj § bju). It

follows that jX determines the multivariate CDF of the random vector X = (X1, . . . , Xn)
which by Dynkin’s p/l-theorem (Theorem 1.8) determines the distribution of X on Rn.
Equality of the characteristic functions thus implies equality in distribution. ⇤
Proof of Theorem 9.10. Assume first that µ is finite. If µ(X ) = 0 then we can set q := 0
so let us assume that µ(X ) ° 0. Let

N law
= Poisson

�
µ(X )

�
(9.27)

and let X1, X2, . . . be i.i.d. with

P(X1 P A) =
µ(A)
µ(X )

, A P G (9.28)

with tXiui•1 independent of N. A probability space (W,F , P) supporting these random
variables exists without any additional requirements on their structure.

Let q : G Ñ N Y t+8u be the map defined by

q(A) :=
Nÿ

i=1

1A(Xi), A P G (9.29)

Then each realization of q is an N Y t+8u-valued measure on (X ,G) and q(A) is a
random variable on (W,F , P) for each A P G.

It remains to check that properties (1-2) in Definition 9.9. For this pick t1, . . . , tk P R

and A1, . . . , Ak P G and compute using the fact that N is independent of X1, X2, . . . which
are themselves independent and equidistributed to X1 to obtain

E
�
ei

∞k
j=1 tjq(Aj)

�
= E exp

"
i

Nÿ

i=1

kÿ

j=1

tj1Aj(Xi)

*

=
8ÿ

n=0

µ(X )n

n!
e´µ(X )

"
E exp

"
i

kÿ

j=1

tj1Aj(X1)

*#n

= exp

#
µ(X )

✓
E exp

!
i

kÿ

j=1

tj1Aj(X1)
)

´ 1
◆+

(9.30)
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Next we invoke that A1, . . . , Ak are disjoint with the result

E exp
"

i
kÿ

j=1

tj1Aj(X1)

*
= E

⇣ kπ

j=1

eitj1Aj (X1)
⌘

= E
✓ kπ

j=1

⇣
1 + (eitj ´ 1)1Aj(X1)

⌘◆

= 1 +
kÿ

j=1

(eitj ´ 1)1Aj(X1) = 1 +
kÿ

j=1

(eitj ´ 1)µ(Aj)

(9.31)

Putting these together we conclude

E
�
ei

∞k
j=1 tjq(Aj)

�
= exp

" kÿ

j=1

(eitj ´ 1)µ(Aj)

*
(9.32)

Noting that the right-hand side is the multivariate characteristic function of (Y1, . . . , Yk)
that are independent with Yj Poisson with parameter µ(Aj), using Lemma 9.11 we con-
clude that tq(Aj)uk

j=1 satisfy (1-2) above.
Moving to the case when µ is infinite, the assumption that it is s-finite implies that

there are disjoint measurable sets tXnun•1 with
î

n•1 Xn = X and µ(Xn) † 8 for
each n • 1. Let tqnun•1 be independent with qn = PPP(1Xn µ) for each n • 1. Set

q :=
ÿ

n•1

qn (9.33)

Then for each A P G, the independence of tqn(A)un•1 along with Lemma 9.4 and a
simple limiting argument ensure

q(A) =
ÿ

n•1

qn(A)
law
= Poisson with parameter

ÿ

n•1

µ(A X Xn) = µ(A) (9.34)

(We also used that, by the 2nd Borel-Cantelli lemma, if
∞

n•1 ln = 8 then the sum
of independent Poisson random variables with parameters l1, l2, . . . diverges a.s.) It
remains to show independence of tq(Ai)uk

i=1 for disjoint A1, . . . , Ak P G. Here we note
that, under such conditions, the whole family tqn(Aj) : n • 1, j = 1, . . . , ku of random
variables is independent. Then so are t

∞
n•1 qn(Aj) : j = 1, . . . , ku.

As a final note, observe that q(Xn) = qn(X ) = Poisson(µ(Xk)) is finite a.s. for
each k • 1. It follows that q is s-finite a.s. ⇤

We remark that, for µ s-finite, the presented construction permits us to think of each
realization of q as a collection of random points points (with at most a finite number
points possibly falling on top of each other anywhere). This is why we call the resulting
random measure a “point” process.
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9.3 Some remarks.

We proceed with some remarks. First note that the homogeneous rate-l Poisson process
does fall under the concept of Poisson Point Process as well:

Lemma 9.12 Let q be a Poisson Point Process on R+ with intensity given by the l-multiple of
the Lebesgue measure. Then tNt : t • 0u, where

Nt := q
�
[0, t]

�
, t • 0 (9.35)

is a homogeneous rate-l Poisson process constructed in Lemma 9.7.

This explains the attribute “homogeneous” in Definition 9.8 and also suggest how to
define the inhomogenous counterparts: Use (9.35) albeit for q = PPP(µ) for a general
Radon measure µ on R+. The increments of the resulting process tNt : t • 0u over
disjoint (half-open) intervals are still independent and Poisson distributed, but Nt ´ Ns
is now Poisson with parameter µ((s, t]). (Textbooks sometimes define the process by
these two properties; the construction then requires work.)

Next we elaborate on the fact that q is actually a measure. Having a measure naturally
suggests consideration of integrals

≥
f dq. Here we note:

Lemma 9.13 Suppose q is a PPP(µ) defined on a probability space (W,F , P). Let f P L1(µ).
Then f P L1(q) a.s. and

≥
f dq admits a version that is a random variable. Moreover, we have

E
ª

f dq =
ª

f dµ (9.36)

and so f fiÑ
≥

f dq is continuous as a map L1(µ) Ñ L1(W,F , P). Finally, for all f P L1(µ),

E
�
eit

≥
f dq
�
= exp

"ª
(eit f (x)

´ 1)µ(dx)
*

(9.37)

holds (with the integral absolutely convergent) for each t P R.

Note that the law of
≥

f dq is not Poisson; rather, it is a mixture of Poisson random
variables. A simple change of variables shows that it falls under:

Definition 9.14 A real-valued random variable Z is said to be compound Poisson if

there exists a Borel measure l on R with
≥ |z|

1+|z| l(dz) † 8 such that

E
�
eitZ� = exp

"ª
(eitz

´ 1)l(dz)
*

(9.38)

holds for all t P R.

Using the familiar construction (cf the proof of Lemma 8.11 or Theorem 9.10), assum-
ing l(R) P (0, 8), an alternative (but equivalent) description of a compound random
variable goes by taking independent random variables N and i.i.d. tXiui•1 with laws
specified by

N law
= Poisson

�
l(R)

�
and P(X1 P ¨) =

l(¨)
l(R)

(9.39)
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and setting

Z :=
Nÿ

i=1

Xi (9.40)

For l(R) = +8 we perform a truncation by introducing

le(dx) := 1[´e,e]c(x)l(dx) (9.41)

which is finite due to
≥ |z|

1+|z| l(dz) † 8. Then take e Ó 0 with the help of Dominated
Convergence. The effect of truncation can alternatively be captured by writing Z as the
double sum

Z =
8ÿ

k=1

Nkÿ

i=1

Xk,i (9.42)

where tNkuk•1 and tXk,iuk,i•1 are independent with Nk
law
= Poisson(l1

k(R)), for l1
k a mea-

sure defined, say, by l1
k := l2´k´1 ´ l2´k , and P(Xk,i P ¨) = l1

k(¨)/l1
k(R) when l1

k(R) ° 0
and P(Xk,i = 0) = 1 otherwise. Unless l is finite, the double sums contains infinitely
many non-zero terms but converges absolutely a.s.

As also noted in the proof of Lemma 8.11, a limit argument can be performed even if≥ |z|
1+|z| l(dz) = 8 but

≥ z2

1+z2 l(dz) † 8 holds. What is needed is to introduce a shift by

µe :=
ª

z
1 + z2 le(dz) (9.43)

Indeed, for Ze defined via le we then have Ze ´ µe
w

›Ñ rZ as e Ó 0, where rZ is defined by
the characteristic function

E
�
eit rZ� = exp

"ª ⇣
eitz

´ 1 ´
itz

1 + z2

⌘
l(dz)

*
(9.44)

where the integral converges thanks to the assumption that
≥ z2

1+z2 l(dz) † 8. Compar-
ing this with the Lévy-Khinchin formula, we conclude that the weak closure of shifted
compound Poisson random variables are exactly all the infinite divisible laws. (The
measure l is then the Lévy measure.)

The above construction has an interesting consequence: If l is supported on R+ then
both (9.40) and (9.42) are positive and so a random variable with characteristic function
(9.38) with supp l Ñ R+ is necessarily non-negative. The shift by µe mucks this up
unless tµeu stays bounded. This is why a totally-skewed (to the right) stable random
variable is bounded from below if a † 1 and unbounded when a P [1, 2).

We leave the proofs of Lemmas 9.12 and 9.13 to homework.

Further reading: Durrett, Section 3.7
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10. CONDITIONAL EXPECTATION

Having discussed at length the limit theory for sums of independent random variables
we will now move on to deal with dependent random variables. An important tool in
this is conditioning which is what we will focus on in this lecture.

10.1 Definitions and the Radon-Nikodym theorem.

In undergraduate probability we learn that, given two events A and B with P(B) ° 0,
the knowledge that B occurs alters the probability that A occurs to

P(A|B) :=
P(A X B)

P(B)
(10.1)

which we call the conditional probability of A given B. The underlying idea behind this
formula is that, since probability anyway represents the relative chance of something
happening compared to all else, knowing that B occurred only restricts both the event
in question and the set of “all else” in the ratio.

With (10.1) settled, we then treat P(¨ | B) as a new probability and use it to define
conditional expectation of random variable X given B by

E(X|B) :=
E(X1B)

P(B)
(10.2)

We will define a similar that instead of conditioning on occurrence of specific events
conditions on a whole s-algebras. The idea is that a s-algebra represents available infor-
mation about the problem at hand. The key definition comes in:

Definition 10.1 (Conditional expectation) Consider a probability space (W,F , P) and a

random variable X P L1(W,F , P). Let G Ñ F be a sigma-algebra. A random variable Y P

L1(W,F , P) is a conditional expectation of X given G if

(1) Y is G-measurable, and

(2) @A P G : E(Y1A) = E(X1A)

hold true.

To see that the new definition does contain the framework described earlier, consider
an event B P F with P(B) P (0, 1) and let G := tH, B, Bc, Wu. Then define

Y :=

$
’’&

’’%

E(X1B)
P(B)

, on B,

E(X1Bc)
P(Bc)

, on Bc,
(10.3)

We then readily check that, since Y is constant on B,

E(Y1B) =
E(X1B)

P(B)
E(1B) = E(X1B) (10.4)

and similarly E(X1Bc) = E(X1Bc). Then E(X1A) = E(X1A) trivially for A = H, W and,
since Y is also G-measurable, it is thus a conditional expectation of X given G.
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Despite its simplicity, the example we just gave is instructive in pointing out that,
for G defined by a partition of W, any G-measurable function has to be constant on each
element of the partition. In particular, our concept of conditional expectation simultane-
ously captures the values E(X|B) for all B in the partition that are of non-zero measure.
Encoding these into a function, it is then more amenable to tools from analysis.

In order to work with the concept of conditional expectation, it is important to first
check whether the imposed conditions identify it uniquely. This comes in:

Lemma 10.2 If Y and Y1 satisfy (1-2), then Y = Y1 a.s.

Proof. Note that A := tY ° Y1
u P G because both Y and Y1 are G-measurable by (1), and

so it thus Y ´ Y1. Therefore, by (2),

E(Y1tY°Y1u) = E(X1tY°Y1u) = E(Y11tY°Y1u). (10.5)

which implies
E
�
(Y ´ Y1)1tY°Y1u

�
= 0 (10.6)

This forces Y § Y1 a.s. Symmetrically, we also get Y1
§ Y a.s. proving Y = Y1 a.s. ⇤

Since the conditional expectation of X given G is determined up to a modification
on a null set, we will henceforth write E(X|G) to denote any version of this function.
However, we first have to address existence:

Proposition 10.3 For each X P L1, the conditional expectation E(X|G) exists.

The proof will be based on the same set of arguments that yield two important results
from measure theory: the Radon-Nikodym theorem and the Lebesgue decomposition of
measures. We will thus prove all of these together. We start with:

Definition 10.4 Given two measures µ, n on a measurable space (X ,G), we say:

‚ µ is absolutely continuous with respect to n, with notation µ ! n, if

@A P G : n(A) = 0 ñ µ(A) = 0 (10.7)

‚ µ and n are mutually singular, with notation µ K n, if

DA P G : µ(A) = 0 ^ n(Ac) = 0 (10.8)

If µ ! n and n ! µ both hold then we say that µ and n are mutually absolutely continu-

ous or, alternatively, that they are equivalent.

We then have:

Theorem 10.5 (Lebesgue decomposition, Radon-Nikodym Theorem) Let µ, n be s-finite
measures on (W,F ). Then there are measures µ1, µ2 so that

µ = µ1 + µ2 ^ µ1 ! n ^ µ2 K n (10.9)

Moreover, there exists an F -measurable, non-negative f : W Ñ R such that

@A P F : µ1(A) =
ª

A
f (x)n(dx) (10.10)
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The part of the statement when µ1 ! n implies existence of f such that µ1 = f n is
the Radon-Nikodym theorem, with f (sometimes denoted as dµ1

dn ) called the Radon-Nikodym
derivative of µ1 with respect to n. The fact that we may write each µ as µ = f n + µ2
with µ2 K n is referred to as the Lebesgue decomposition. While these two results are often
proved separately (with the Lebesgue decomposition relying on the Hahn and Jordan
decompositions of signed measures), our argument will give both in one shot.

10.2 Proof of Theorem 10.5 and Proposition 10.3.

Our proof of Theorem 10.5 (originally due to J. von Neumann) is based on Hilbert space
techniques. Recall that a linear vector space H with an inner product (¨, ¨) is a Hilbert
space if it complete in the norm } ¨ } associated with the inner product as } f } = ( f , f )1/2.
Examples of Hilbert spaces are ubiquitous in analysis: R, C, Rn, `2(N), L2(µ), etc.

A linear map j : H Ñ R (assume H is over reals) is a continuous linear functional
if and only if it is bounded in the sense that DC ° 0@x P H : |j(x)| § C}x}. Denoting
by H

‹ the space of continuous linear functionals on H, we get:

Lemma 10.6 (Riesz representation) Let H be a Hilbert space over the reals and j P H
˚ a

continuous linear functional. Then there is a P H such that

@x P H : j(x) = (a, x) (10.11)

Proof. The continuity of j implies that B := tx P H : j(x) = 0u is a closed linear
subspace of H. As j = 0 is handled by a := 0, we may suppose j ‰ 0. Then there exists
x0 P H r B with j(x0) ‰ 0. Next we show existence the orthogonal decomposition
x0 = ã + b, where b P B and ã K B. Let tbnun•0 be a sequence in B such that

}x0 ´ bn} ›Ñ
nÑ8 c := inf

bPB
}x0 ´ b} (10.12)

Reducing to a subsequence, we may assume that }x0 ´ bn}
2

´ c2
§ 4´n´1. The Paralel-

logram Law then shows

}bn ´ bm}
2 = }(x0 ´ bm) ´ (x0 ´ bn)}

2

= 2}x0 ´ bn}
2 + 2}x0 ´ bn}

2
´ 4

›››› x0 ´
bn + bm

2

››››
2

§ 2}x0 ´ bn}
2 + 2}x0 ´ bn}

2
´ 4c2

§ 4´ mintn,mu

(10.13)

where we used that bn+bm
2 P B by the fact that B is a linear space. It follows that tbnun•1

is Cauchy in H and, since B is closed and H is complete, tends to a limit b P B.
Next observe that bn Ñ b used in (10.12) implies c = }x0 ´ b}. Given any b1

P B and
any e ‰ 0, this gives

0 § }x0 ´ b + eb1
}

2
´ }x0 ´ b}

2 = 2e(b1, x ´ b) + e2
}b1

}
2 (10.14)

Dividing by e and taking e Ó 0 shows (b1, x ´ b) • 0 and taking e Ò 0 gives (b1, x ´ b) = 0.
It follows that ã := x0 ´ b K B and j(ã) = j(x0) ‰ 0. In particular, ã ‰ 0.
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To finish the claim, observe that

@x P H : x ´
j(x)
j(ã)

ã P B (10.15)

as is checked by applying j and invoking its linearity. Since ã K B, it follows that

@x P H : (ã, x) =
j(x)
j(ã)

(ã, ã) (10.16)

Setting a := j(ã)
(ã,ã) ã, this reduces to (10.11). ⇤

With this fact in hand, we can now give:
Proof of Theorem 10.5. The s-finiteness assumption permits us to assume that both µ
and n are finite measures. (Otherwise partition the space into parts where this is true.)
Consider the Hilbert space H := L2(W,F , µ + n) and define the functional

j(g) :=
ª

gdµ, g P H (10.17)

Since µ is finite, the Cauchy-Schwarz inequality gives
ˇ̌
j(g)

ˇ̌
§ µ(W)1/2

}g}L2(µ) § C}g}H (10.18)

As j is linear, we get j P H
‹. The Riesz representation (Lemma 10.6) ensures the exis-

tence of h P H such that

@g P L2(W,F , µ + n) :
ª

gdµ =
ª

gh d(µ + n) (10.19)

Note that the integral on the right is finite thanks to the Cauchy-Schwarz inequality.
We now make a couple of observations that show that h may be taken [0, 1]-valued.

First, taking g := 1th•1u in (10.19) implies µ(h • 1) • µ(h • 1) + n(h • 1) which forces

n(h • 1) = 0 (10.20)

Next, taking g := 1th•1+eu with e ° 0 yields µ(h • 1 + e) • (1 + e)µ(h • 1 + e) and
thus also µ(h • 1 + e) = 0 for all e ° 0. Letting e Ó 0 we get

µ(h ° 1) = 0 (10.21)

Finally, taking g := 1th†´eu with e ° 0 yields 0 § µ(h † ´e) § ´e(µ + n)(h † ´e)
implying (µ + n)(h † ´e) = 0. Hence we get

(µ + n)(h † 0) = 0 (10.22)

by letting e Ó 0.
With these observations in hand, we now define

µ1(dx) := 1t0§h(x)†1uµ(dx) (10.23)

and
µ2(dx) := 1th(x)=1uµ(dx) (10.24)
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Then µ1 + µ2 = µ and µ2 K n by the above claims. For the proof of the remaining
properties, we rewrite (10.19) as

ª
g(x)

⇥
1 ´ h(x)

⇤
µ(dx) =

ª
g(x)h(x)n(dx) (10.25)

On the left hand side we can now replace µ by µ1; picking A P F , setting g to

ge(x) := 1t0§h(x)†1´eu
1

1 ´ h(x)
1A(x) (10.26)

which is bounded and thus in L2(W,F , µ + n) for all e ° 0, and taking e Ó 0 with the
help of the Monotone Convergence Theorem then yields

@A P F : µ1(A) =
ª

A

h(x)
1 ´ h(x)

1t0§h(x)†1u n(dx) (10.27)

Denoting the integrand as f (x), this is (10.10). Since the integral vanishes when A is
n-null, this also gives µ1 ! n as desired. ⇤

We are now also ready to conclude the existence of the conditional expectation:
Proof of Proposition 10.3. Suppose first that X • 0. Define the measure µ on G by

µ(A) := E(X1A), A P G (10.28)

This is a finite measure which is absolutely continuous with respect to P restricted to G.
Hence, there is G-measurable Y • 0 such that

@A P G : µ(A) =
ª

A
Y(w)P(dw) = E(Y1A) (10.29)

It follows that Y satisfies the properties (1-2) of conditional expectation. The general in-
tegrable X are taken care of by expanding into positive and negative parts and applying
the above to each part separately. ⇤

In summary, we showed that, given any sub-s-algebra G Ñ F , to each X P L1 we can
assign a unique G-measurable random variable E(X|G) P L1 that integrates to the same
number as X on any set A P G. The interpretation of E(X|G) is the “best estimate” of X
given the information contained in G.

Further reading: Durrett, Section 4.1
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11. PROPERTIES OF CONDITIONAL EXPECTATION

Having defined conditional expectation and showed its uniqueness modulo changes
on null sets, we now discuss its properties. It will be noted that, in many ways, the
conditional expectation behaves just like ordinary expectation.

11.1 Basic properties.

We start with a list of properties that are quite immediate to check:

Lemma 11.1 Assuming all random variables below are integrable, we have:
(1) (triviality on constants) E(1|G) = 1 a.s.
(2) (positivity) X • 0 a.s. ñ E(X|G) • 0 a.s.
(3) (linearity) E(aX + bY|G) = aE(X|G) + bE(Y|G) a.s.
(4) E(E(X|G)) = E(X).
(5) If X is G measurable, then E(X|G) = X a.s.

Proof. For (1), (3) and (5) we just check that the suggested forms of conditional expec-
tation satisfies properties in Definition 10.1; the claim then follow from the uniqueness
in Lemma 10.2. For (2) we note that X • 0 implies E(Y1tY†0u) = 0 for any version Y
of E(X|G) and so Y • 0 a.s. Property (4) is checked directly from Definition 10.1(2). ⇤

Note that property (5) is consistent with our interpretation of E(X|G) being the “best
estimate” of X given the information available in G because being G-measurable then
just means that the “best estimate” of X is X itself. The following simple observation
can be explained in similar vain:

Lemma 11.2 Suppose that s(X) and G are independent. Then

E(X|G) = EX a.s. (11.1)

Proof. Constants are universally measurable so condition (1) in the definition of con-
ditional expectation holds. For condition (2) we notice that for any A P G, the stated
independence means

E(X1A) = E(X)E(1A) = E
�
E(X)1A

�
. (11.2)

Hence, E(X) serves as a version of E(X|G). ⇤
Another property is an extension of Definition 10.1(2):

Lemma 11.3 Let X and Y be random variables with Y P L1(W,F , P) and XY P L1(W,F , P).
For any s-algebra G Ñ F ,

X is G-measurable ñ E(XY|G) = XE(Y|G) a.s. (11.3)

The upshot of this lemma is that anything that is measurable with respect to the con-
ditional s-algebra can be regarded as constant under the conditional expectation. We
leave the proof to a homework exercise.

Next let also examine the dependence of the conditional expectation on the underly-
ing s-algebra. The following principle is often quite useful:
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Lemma 11.4 (“Smaller always wins” principle) Let G1 Ñ G2 be sub s-algebras of F . Then
for any X P L1(W,F , P)

E
�
E(X|G1)

ˇ̌
G2
�
= E(X|G1) a.s. (11.4)

as well as
E
�
E(X|G2)

ˇ̌
G1
�
= E(X|G1) a.s. (11.5)

In short, iterated conditioning always reduces to that with respect to the smaller sigma algebra.

Proof. For (11.4), note that E(X|G1) is G2-measurable (because it is already G1-measurable)
and the expectation of both sides agree on any event A P G2. The proof of uniqueness of
the conditional expectation thus applies to show equality a.s.

For (11.5) we note that both sides are automatically G1-measurable. So picking A P G1
and applying condition (2) from the definition of conditional expectation, we get

E(X1A) =
APG2

E
�
E(X|G2)1A

�
=

APG1
E
�
E
�
E(X|G2)

ˇ̌
G1
�
1A
�

(11.6)

Again, by the uniqueness argument, this implies the second identity as well. ⇤
A particularly interesting choice of G is the s-algebra s(Y) generated by random vari-

able Y. Here we get:

Lemma 11.5 (Doob-Dynkin lemma) Let X P L1(W,F , P) be R-valued and, given a mea-
surable space (S, S), let Y be an S-valued random variable. Then there exists a Borel measurable
map h : S Ñ R such that

E
�
X

ˇ̌
s(Y)

�
= h(Y) a.s. (11.7)

We leave the proof of this lemma to homework.

11.2 Convergence theorems.

As a consequence of above properties we get versions of standard convergence theorems
for conditional expectation. We start with:

Lemma 11.6 (Conditional Monotone Convergence Theorem) Suppose that tXnun•1 and X
are random variables in L1. Then

Xn Ò X a.s. ñ E(Xn|G) Ò E(X|G) a.s. (11.8)

Proof. Subtracting X1 from Xn and X and applying additivity in Lemma 11.1(3) permits
us to assume Xn • 0 for all n • 1. By Lemma 11.1(2), Xn Ò X a.s. implies that E(Xn|G) are
non-decreasing a.s. Denoting Y := lim infnÑ8 E(Xn|G), for each A P G the Monotone
Convergence Theorem along with properties in Definition 10.1 give

E
�
E(X|G)1A

�
= E

�
X1A

�

= lim
nÑ8 E

�
Xn1A

�

= lim
nÑ8 E

�
E(Xn|G)1A

�
= E

�
Y1A

�
(11.9)
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Hence we get

@A P G : E
⇣⇥

E(X|G) ´ Y
⇤
1A

⌘
= 0 (11.10)

Testing this on A := tE(X|G) ° Yu and A := tE(X|G) † Yu shows E(X|G) = Y a.s. ⇤
Another convergence lemma comes in:

Lemma 11.7 (Conditional Fatou’s lemma) Suppose that tXnun•1 are non-negative and be-
long to L1. Assume also lim infnÑ8 Xn P L1. Then

lim inf
nÑ8 E(Xn|G) • E

�
lim inf

nÑ8 Xn
ˇ̌
G
�

a.s. (11.11)

Proof. In light of Xn • infm•n Xm, we have infm•n Xm P L1 for each n • 1. Lemma 11.1(2)
then gives E(Xn|G) • E(infm•n Xm|G) and so

lim inf
nÑ8 E(Xn|G) • lim inf

nÑ8 E( inf
m•n

Xm|G) (11.12)

Since infm•n Xm Ò lim infnÑ8 Xn, the claim follows from Lemma 11.6. ⇤

Remark 11.8 Note that, unlike the non-conditional versions of (11.8) and (11.11), the
conditional statements assume integrability of the limiting random variables. This can
be overcome by defining E(X|G) for any X • 0 as a G-measurable version of

Y := lim inf
nÑ8 E(X ^ n|G) (11.13)

which may be infinite on a set of positive or even full measure. (To give an example,
let X take values in N1 := N r t0u with P(X = n) = [n(n + 1)]´1. For the choice
G := tH, tX evenu, tX oddu, N1

u we get Y = 8.) The argument in (11.9) then shows
that E(X1A) = E(Y1A) for all A P G, albeit with both sides possibly infinite.

Noting that the identity gives E(X1tY§au) † 8 for each a ° 0 suggests how to
upgrade our previous arguments. For instance, if Y1 is another G-measurable non-
negative random variable satisfying E(X1A) = E(Y1A) for all A P G, then testing this
on A := tY1

° Yu X tY ^ Y1
§ au and taking a Ñ 8 shows Y1

§ Y a.s. on tY ^ Y1
† 8u

and, by symmetry, implies Y = Y1 a.s. The statement of (11.8) then applies because
Y1 := limnÑ8 E(Xn|G) is a version of Y. Similarly we get (11.11).

We remark that, with conditional Fatou’s lemma in place, we can also easily prove:

Lemma 11.9 (Conditional Dominated Convergence Theorem) Let tXnun•1 be random
variables such that @n • 1 : |Xn| § Y for some Y P L1(W,F , P). Given any s-algebra G Ñ F ,

Xn ›Ñ
nÑ8 X a.s. ñ E(Xn|G) ›Ñ

nÑ8 E(X|G) a.s. (11.14)

Here E(X|G) is well defined because the assumptions imply X P L1(W,F , P).

Proof. Suppose that Xn Ñ X a.s. with |Xn| § Y for each n • 1. Since 0 § Xn + Y § 2Y
implies lim infnÑ8(Xn + Y) P L1, Lemma 11.7 gives

E(X + Y|G) § lim inf
nÑ8 E(Xn + Y|G) a.s. (11.15)
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Working with Y ´ Xn instead similarly shows

E(X ´ Y|G) • lim sup
nÑ8

E(Xn ´ Y|G) a.s. (11.16)

where we reversed signs for convenience. Subtracting or adding E(Y|G) on both sides
with the help of linearity in Lemma 11.6(3) yields

E(X|G) § lim inf
nÑ8 E(Xn|G) § lim sup

nÑ8
E(Xn|G) § E(X|G) a.s. (11.17)

which is the desired conclusion. ⇤

11.3 Inequalities.

The conditional expectation also generalizes a number of inequalities that we know from
Lebesgue integration theory. We start with:

Lemma 11.10 If X P L1(W,F , P) and G Ñ F is a s-algebra, then
ˇ̌
E(X|G)

ˇ̌
§ E

�
|X|

ˇ̌
G
�

(11.18)

and so ››E(X|G)
››

L1(W,G,P) § }X}L1(W,F ,P). (11.19)

In particular, X fiÑ E(X|G) is a continuous linear map — in fact, a contraction — of L1(W,F , P)
onto L1(W,G, P).

Proof. We have ´|X| § X § |X| and so

´E
�
|X|

ˇ̌
G
�

§ E(X|G) § E
�
|X|

ˇ̌
G
�

a.s. (11.20)

This proves (11.18); taking expectation then yields (11.19). Since X fiÑ E(X|G) is linear
a.s. by Lemma 11.6(3), it defines a linear map of L1(W,F , P) onto L1(W,G, P). By (11.19)
the operator norm of this map is less than one so this map is a contraction. The map is
onto as it acts as identity on L1(W,G, P). ⇤

Lemma 11.11 (Conditional Cauchy-Schwarz inequality) Suppose X, Y P L2(W,F , P) and
let G Ñ F be a s-algebra. Then

⇥
E(XY|G)

⇤2
§ E(X2

|G)E(Y2
|G) a.s. (11.21)

Proof. Note that XY, X2, Y2
P L1 by assumption. This permits us to pick finite versions

of the conditional expectations in the statement. By Lemma 11.6(3),

E(X2
|G) ´ 2lE(XY|G) + l2E(Y2

|G) (11.22)

is a version of E((X ´ lY)2
|G), which is non-negative a.s. by Lemma 11.6(2). It follows

that there exists W1
P G with P(W1) = 1 such that the expression in (11.22) is finite and

non-negative for all l P Q. By continuity, it is then non-negative for all l P R on W1 and
so the discriminant of the quadratic polynomial (11.22) is non-negative on W1. This is
what is stated in (11.21). ⇤

We now upgrade another useful identity from analysis:
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Lemma 11.12 (Conditional Jensen’s inequality) Let f : R Ñ R be convex. Then for
any X P L1(W,F , P) such that f(X) P L1(W,F , P) and any s-algebra G Ñ F ,

E
�
f(X)

ˇ̌
G
�

• f
�
E(X|G)

�
a.s. (11.23)

Proof. Since the claim holds trivially if f is linear, we may assume that it is not. Set

L :=
£

xPR

 
(a, b) P R2 : f(x) • ax + b

(
(11.24)

We then claim
@x P R : f(x) = sup

(a,b)PLXQ2
(ax + b) (11.25)

Indeed, the definition of L gives “•” and so we need to show “§.” Let x0 P R. Noting
that the convexity of f implies the existence of left and right derivatives at x0, let a0 P R

be any number in the closed interval marked by the two derivatives. For b := f(x0) ´

ax0, the graph of x fiÑ ax+ b is then tangent to the graph of f at x0 and so (a, b) P L. Now
observe that, for any b1

† b, we must have (a1, b1) P L whenever |a1
´ a| is sufficiently

small, for otherwise f would have to be linear. This allows us to pick (a1
n, b1

n) P L X Q2

such that (a1
n, b1

n) Ñ (a, b). But then f(x0) = ax0 + b = limnÑ8(a1
nx0 + b1

n) proving “§”
in (11.25). Hence equality holds as desired.

Since f(X) • aX + b for each (a, b) P L, and since f(X) and X are assumed to be
in L1, we thus have

@(a, b) P L : E
�
f(X)

ˇ̌
G
�

• aE(X|G) + b a.s. (11.26)

Let Wa,b be the event where the inequality holds for pair (a, b) and both conditional
expectations are finite. Define

W1 :=
£

(a,b)PLXQ2

Wa,b (11.27)

and note that, on W1, the inequality in (11.26) holds for all (a, b) P L X Q2. Taking a
supremum with the help of (11.25) then proves the inequality in (11.23) on W1. Since
(11.26) implies P(W1) = 1, we are done. ⇤

11.4 Behavior in Lp-spaces.

A consequence of the conditional Jensen inequality is a generalization of Lemma 11.10:

Lemma 11.13 For any p P [1, 8], the map X fiÑ E(X|G) is a continuous linear transform of
Lp(W,F , P) onto Lp(W,G, P). In fact,

@X P Lp(W,F , P) :
››E(X|G)}Lp(W,G,P) § }X}Lp(W,F ,P) (11.28)

and so the map is a contraction.

Proof. Let p P [1, 8). By conditional Jensen’s inequality we have
⇣

E
�
|X|

ˇ̌
G
�⌘p

§ E
�
|X|

p ˇ̌
G
�

a.s. (11.29)
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Taking expectations and raising both sides to 1/p yields the result.
For p := 8 we notice that |X| § }X}8 implies

ˇ̌
E(X|G)

ˇ̌
§ }X}8 a.s. (11.30)

and so the result follows in this case as well. ⇤
For the special case p = 2, we even get a geometric representation:

Lemma 11.14 Let X P L2(W,F , P) and assume G Ñ F is a s-algebra. Then, using the notion
of orthogonality with respect to the canonical inner product,

X ´ E(X|G) K L2(W,G, P) (11.31)

In particular, E(X|G) is the orthogonal projection of X onto L2(W,G, P).

Proof. For each A P G, Definition 10.1(2) gives

E
⇣⇥

X ´ E(X|G)
⇤

1A

⌘
= 0 (11.32)

Using linearity, this shows that X ´ E(X|G) is orthogonal to the set of all simple G-
measurable functions. Since these simple functions are dense in L2(W,G, P) it is orthog-
onal to the whole space. ⇤

We remark that this observation reverse-engineers a key step in the proof of Theo-
rem 10.5 where the Radon-Nikodym derivative was constructed exactly as an orthogo-
nal projection. Note that Lemma 11.3 generalizes (11.31) as

X P Lp(W,F , P) ñ X ´ E(X|G) K Lq(W,G, P) (11.33)

where q is the Hölder conjugate of p and “K” is still with respect to the canonical in-
ner product in L2. However, the concept of orthogonal projection is hard to articulate
outside Hilbert spaces.

To wrap up our discussion of conditional inequalities, we also state:

Lemma 11.15 (Conditional Hölder inequality) Let p, q P [1, 8] be such that 1/p + 1/q = 1.
Then for any s-algebra G Ñ F , all X P Lp(W,F , P) and all Y P Lq(W,F , P),

ˇ̌
E(XY|G)

ˇ̌
§ E

�
|X|

p ˇ̌
G
�1/p E

�
|Y|

q ˇ̌
G
�1/q a.s. (11.34)

with E
�
|X|

p
ˇ̌
G
�1/p interpreted as }X}8 when p = 8.

We leave the proof of Lemma 11.15 to homework.

Further reading: Durrett, Section 4.1

Preliminary version (subject to change anytime!) Typeset: April 7, 2025



MATH 275B notes 80

12. REGULAR CONDITIONAL PROBABILITY

The conditional expectation shares so many properties with expectation that one may
wonder if it can also be realized as an integral with respect to a measure. This leads to
the concepts of conditional distribution and probability that we elaborate on here.

12.1 Conditional distribution.

Consider the setting from the previous sections; namely, a probability space (W,F , P)
with a random variable X and a s-algebra G Ñ F . As is known from undergraduate
probability, for G such that G = s(Y) for some random variable Y we can often write
the conditional expectation of X (or even functions of X) given G explicitly. For instance,
assuming that (X, Y) admits a probability density r : R2

Ñ R+, we have

E
�

f (X)
ˇ̌
s(Y)

�
(w) =

ª
f (x)r(x, Y(w))dx
ª

r(z, Y(w))dz
(12.1)

whenever f (X) P L1(W,F , P), the denominator is non-vanishing and the numerator is
finite. In this case we succeeded in writing the conditional expectation as an integral
with respect to a Borel probability measure on R with probability density

rrw(x) :=
r(x, Y(w))ª
r(z, Y(w))dz

(12.2)

for w where the integral is positive and, say, rrw(x) := 1[0,1](x) otherwise. (The value in
the latter alternative is immaterial as it occurs with probability zero.)

The question is to what extend we can do this when the random variables do not ad-
mit a joint density or, more importantly, when G is not generated by a random variable.
This is answered in:

Theorem 12.1 Let X be a real-valued random variable on a probability space (W,F , P) and let
G Ñ F be a s-algebra. Then there exists a map µX : W ˆ B(R) Ñ [0, 1] such that

(1) for all w P W, the map B fiÑ µX(w, B) is a probability measure on (R, B(R)),
(2) for all B P B(R), the map w fiÑ µX(w, B) is G-measurable,
(3) for all Borel f : R Ñ R with f (X) P L1(W,F , P), the set of w P W where

f P L1(µX(w, ¨)) (12.3)

and

E
�

f (X)
ˇ̌
G
�
(w) =

ª
f (x)µX(w, dx) (12.4)

is G-measurable and of full P-measure.
Moreover, for any map µ̃X with the above properties,

ì
APB(R)tw P W : µX(w, A) ‰ µ̃X(w, A)u

is a G-measurable set of full P-measure.
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Note that the null set where (12.3–12.4) fail is permitted to depend on f . The integral
representation of the conditional expectation suggests the following terminology:

Definition 12.2 We will call µX a version of the conditional distribution of X given G.

Proof of Theorem 12.1. For each q P Q, use the Axiom of Countable Choice to pick a
version of E(1tX§qu|G). We then use these objects to define the following sets: First, for
q † q1 rational we let

Wq,q1 :=
 

w P W : E(1tX§qu|G)(w) § E(1tX§q1u|G)(w)
(

. (12.5)

Next, for q P Q we define

Wq :=
!

w P W : E(1tX§qu|G)(w) = inf
q1°q
q1PQ

E(1tX§q1u|G)(w)
)

. (12.6)

In addition, we also define

W+8 :=
!

w P W : sup
qPQ

E(1tX§q1u|G)(w) = 1
)

W´8 :=
!

w P W : inf
qPQ

E(1tX§q1u|G)(w) = 0
) (12.7)

Note that, by the properties of the conditional expectation, all of these are full-measure
events in G. So, if we set

W1 :=
✓ £

q1°q
q1PQ

Wq,q1

◆
X

⇣£

qPQ

Wq

⌘
X W+8 X W´8, (12.8)

then also W1
P G with P(W1) = 1.

We now move to the construction of µX. First, for w P W and q P Q, let

F(w, q) :=

#
E(1tX§qu|G)(w), if w P W1

1tq•0u, otherwise
(12.9)

Then q fiÑ F(w, q) is non-decreasing, right-continuous on Q with limits 1, resp., 0 as
q Ñ +8, resp., q Ñ ´8. Setting

rF(w, x) := inf
q°x
qPQ

F(w, q) (12.10)

we get x fiÑ rF(w, x) with exactly the same properties and such that rF(w, q) = F(w, q)
for all q P Q. In particular, x fiÑ rF(w, x) is a CDF and so, by the existence theorems for
Lebesgue-Stieltjes measures, there is a Borel probability measure µX(w, ¨) such that

rF(w, x) = µX
�
w, (´8, x]

�
, x P R (12.11)

It now remains to verify the stated properties.
Property (1) is ensured by the construction. For property (2), denote

L :=
 

A P B(R) : w fiÑ µX(w, A) is G-measurable
(

(12.12)
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and check that L contains W, H and is closed under finite unions, complements and
increasing limits and so it is a s-algebra. Note also that w fiÑ rF(w, x) is G-measurable,
being the infimum of a countable set of G-measurable functions. In light of (12.11), L
thus contains all sets of the form (´8, q] for q P Q and so L = B(R) thus proving (2).

Condition (3) is verified similarly: First we note that (12.4) holds for f ’s of the form
f (x) := 1tx§qu for q P Q. The set

L
1 :=

 
A P B(R) : µX(¨, A) = E(1A|G) a.s.

(
(12.13)

is again checked to be a s-algebra and so equality therein holds (a.s.) for all A P B(R).
This verifies (12.4) for all f of the form f = 1A with A P B(R) and, by additivity, for all
simple functions f . Using the Monotone Convergence Theorem, we now extend (12.4)
to all non-negative measurable functions f P L1, thus proving (12.3). The extension to
all f P L1 is performed by additivity.

It remains to prove uniqueness. Given µX and µ̃X that both satisfy the stated proper-
ties, the representation (12.4) shows that the set

rW :=
£

qPQ

!
w P W : µ̃X

�
w, (´8, q]

�
= µX

�
w, (´8, q]

�)
(12.14)

is G-measurable and of full P-measure. Since t(´8, q] : q P Qu form a p-system generat-
ing B(R), Dynkin’s p/l-theorem ensures that µ̃X(w, A) = µX(w, A) hold for all w P rW
and all A P B(R). Hence µX(w, ¨) = µ̃X(w, ¨) for a.e. w P W. ⇤

12.2 Conditional probability and lack thereof.

While the above seems to resolve our original question, the proof made a key use of
the fact that X was real-valued. We can thus continue asking whether the same can
be done for general-valued random variables and, perhaps more importantly, for all
random variables simultaneously. This leads to the following concept:

Definition 12.3 Given a probability space (W,F , P) and a s-algebra G Ñ F , a regular
conditional probability given G is a map µ : W ˆ F Ñ [0, 1] such that

(1) for all w P W, the map A fiÑ µ(w, A) is a probability measure on (W,F ),
(2) for all B P F , the map w fiÑ µ(w, B) is G-measurable,

(3) for all X P L1(W,F , P), the set of w P W such that

X P L1(µ(w, ¨)) (12.15)

and

E
�
X

ˇ̌
G
�
(w) =

ª
X(w1)µ(w, dw1) (12.16)

is G-measurable and of full P-measure.

Another name for µ is Markov kernel.

We immediately check:
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Lemma 12.4 Suppose that F is countably generated. If µ and µ̃ are two regular conditional
probabilities given G, then there exists W1

P G with P(W1) = 1 such that µ(w, A) = µ̃(w, A)
holds for all w P W1 and all A P F .

Proof. For A P F , let WA := tw P W : µ(w, A) = µ̃(w, A)u. Then WA P G and, by (12.16),
P(WA) = 1. If P is the countable subset of F with s(P) = F , then set W1 :=

ì
APP WA

and note that, by Dynkin’s p/l-theorem, µ(w, ¨) = µ̃(w, ¨) for all w P W1. Since W1
P G

and P(W1) = 1, we are done. ⇤
A typical setting when we may need a regular conditional probability is the probabil-

ity space endowed with a special random variable, say Y, representing an initial value
of a process or some other important quantity, and we wish to condition on its value.
In other words, we are concerned with the special case G = s(Y) for a real-valued Y.
While this may sound reasonable, even in this case the existence of a map with the stated
properties cannot be guaranteed in full generality. Here is a counterexample:

Lemma 12.5 (J. Dieudonne, 1947) Denote I := [0, 1] and set

‚ W := I ˆ I,
‚ F := Lebesgue measurable subset of I ˆ I,
‚ P := Lebesgue measure on (W,F ), and
‚ G := tA ˆ I : A P B(I)u.

Then there exists no regular conditional probability given G.

The proof will be based on the following fact:

Theorem 12.6 (G. Vitali 1905) Let l denote the Lebesgue measure on (I,B(I)). Assuming
the Axiom of Choice, the map B fiÑ l(B) does not extend to a measure on all subsets of I.

Proof of Lemma 12.5. Continue writing l for the Lebesgue measure on I and suppose µ
is a map with the properties as in Definition 12.3. For each A, B P B(I), let

WA,B :=
!
(x, y) P I ˆ I : µ

�
(x, y), A ˆ B

�
= 1A(x)l(B)

)
(12.17)

Since 1A(x)l(B) equals the value of the map (x, y) fiÑ 1AˆI(x, y)l(B), which is demon-
strably G-measurable, Definition 12.3(2) gives WA,B P G. Moreover, for any C P B(I), the
fact that the Lebesgue measure equals l b l on products of Borel sets gives

E
�
1CˆI1AˆIl(B)

�
= l(C X A)l(B) = E

�
1CˆI1AˆB

�
(12.18)

and so (x, y) fiÑ 1A(x)l(B) is a version of E(1AˆB|G). In light of (12.16) it follows
that P(WA,B) = 1 for all A, B P B(I).

The s-algebra B(I) is generated by the p-system P := t[0, q] : q P Q X Iu which is
countable. Denote

W1 :=
£

A,BPP
WA,B (12.19)
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The standard argument based on Dynkin’s p/l-theorem now shows that equality in
(12.17) holds on W1 for all A, B P B(I) simultaneously; i.e.,

@(x, y) P W1
@A, B P B(I) : µ

�
(x, y), A ˆ B

�
= 1A(x)l(B) (12.20)

Since P(W1) = 1, we can pick (x‹, y‹) P W1 and noting that tx‹
u P B(I) get

@B P B(I) : µ
�
(x‹, y‹), tx‹

u ˆ B
�
= l(B) (12.21)

But C fiÑ µ((x‹, y‹), C) is a measure on Lebesgue measurable sets and, since tx‹
u ˆ B is

Lebesgue-null and thus Lebesgue measurable for any B Ñ I, by (12.21) the map

B fiÑ µ
�
(x‹, y‹), tx‹

u ˆ B
�

(12.22)

extends to a measure on all subsets of I. Since the map coincides with l(¨) on Borel sets,
this contradicts Vitali’s Theorem once we assume the Axiom of Choice. ⇤

12.3 Existence result.

The counterexample above shows that the main obstruction to the existence of the con-
ditional probability: there are too many P-null sets in F . That null sets matter is not
surprising because all we are trying to do is to put many Radon-Nikodym derivatives
together in a measurable way. A way to get around this is by assuming additional struc-
ture on the underlying probability space, as in:

Theorem 12.7 Suppose that W is a Polish space (i.e., a completely metrizable, second-countable
topological space) and F is the associated Borel s-algebra. Then for all s-algebras G Ñ F , a
regular conditional probability given G exists. Moreover, if G is countably generated, then

@A P G : µ(¨, A) = 1A a.s. (12.23)

(We say that µ is proper if (12.23) holds.)

While a complete proof can be constructed with no extraneous reference, we will cut
the story short by relying on the following result from descriptive set theory:

Theorem 12.8 (Borel isomorphism theorem) Let X be a Polish space and B(X ) the asso-
ciated Borel s-algebra. Let

Y :=

$
’&

’%

t1, . . . , |X |u, if X is finite,
N, if X is infinite and countable,
[0, 1], if X is uncountable,

(12.24)

which we endow with its natural Borel s-algebra B(Y ). Then there exists a bi-mesurable bijec-
tion f : X Ñ Y ; i.e., a bijective map such that f ´1(B(Y )) = B(X ) and f (B(X )) = B(Y ).

We remark that a Polish space endowed with its Borel sets is called a standard Borel
space. The above theorem states that Polish spaces are either finite, countable or of cardi-
nality of the continuum and two such spaces are equivalent if and only if their cardinal-
ity is the same. What matters for us is that, in all three possible cases, every Polish space
is equivalent to a Borel subset of R.
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Proof of Theorem 12.7. Theorem 12.8 guarantees existence of a random variable X map-
ping W bijectively and bi-mesasurably onto a Borel subset of R. This implies

@A P B(W) : X(A) P B(R) ^
�
@w P W : X(w) P X(A) ô w P A

�
(12.25)

Let µX be the conditional distribution of X given G and set

µ(w, A) := µX
�
w, X(A)

�
, A P G (12.26)

This immediately gives that w fiÑ µ(w, A) is G-measurable. The fact that X is bijective
means that A fiÑ X(A) maps disjoint unions into disjoint unions which along with the
first part (12.25) implies that A fiÑ µ(w, A) is a probability measure. Thanks to (12.25)
we also get

µX
�
¨, X(A)

�
= E

�
1XPX(A)

ˇ̌
G
�
= E(1A|G) a.s. (12.27)

which then gives (12.15–12.16) by standard extension arguments. It follows that µ is a
regular conditional probability given G.

In order to prove the second part, note that for all A P G,

WA :=
 

w P W : µ(w, A) = 1A(w)
(

(12.28)

is a G-measurable set with P(WA) = 1. If G is generated by a countable collection P , we
can take W1 :=

ì
APP WA and observe that

L :=
 

A P G :
�
@w P W1 : µ(w, A) = 1A(w)

�)
(12.29)

is a s-algebra containing P . Hence L = G and µ(¨, A) = 1A holds for all A P G on W1.
Since P(W1) = 1, this is (12.23). ⇤

The condition that the underlying space is Polish is usually not too restrictive for most
applications. However, what one should be careful about is the fact demonstrated in
Lemma 12.5: Working with a completed measure may ruin the existence of conditional
probabilities. (This sometimes matters when one discusses stochastic calculus from the
point of view of Markov processes.)

12.4 Extension of measures in product spaces.

The existence of conditional probabilities is central in the theory of disintegration of
measures and integrals. Standard Borel spaces shows up in other important conclusions
in probability, one of which is the Kolmogorov Extension Theorem. This theorem says that,
given a standard-Borel space (X ,F ) and, for each n • 1, a probability measure µn on
(X n,Fbn) such that the consistency condition

@n • 1 @A P F
bn : µn+1(A ˆ X ) = µn(A) (12.30)

holds, there exists a unique probability measure µ on (X N,FbN) that reduces to µn on
(X n,Fbn) under the natural embedding of these spaces.

While it is known that such an extension may fail in general, the assumption that
(X ,F ) is standard Borel is definitely not necessary. Indeed, alternatively it suffices
that µn+1 disintegrates with respect to µn and that the corresponding conditional mea-
sure is very regular. Here is a precise statement:
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Theorem 12.9 (Extension of measures in product spaces) Let (X ,F ) be a measurable
space. Assume that, for each n • 1, a probability measure µn on (X n,Fbn) is given such that

@A P F
b(n+1) : µn+1(A) =

ª
qn(x, A)µn(dx) (12.31)

where qn : X n
ˆ F

b(n+1)
Ñ [0, 1] is F

bn-measurable in the first coordinate, a probability
measure on (X n+1,Fb(n+1)) in the second coordinate and obeys

@x P X n
@A P F

bn : qn(x, A ˆ X ) = 1A(x) (12.32)

Then there exists a probability measure µ on (X N,FbN) that restricts to µn on (X n,Fbn)
under the natural embedding of X n into X N.

Proof. We will identify F
bn with the s-algebra

Fn := s

✓!
A1 ˆ ¨ ¨ ¨ ˆ An ˆ X ˆ X ˆ . . . : A1, . . . , An P F

)◆
(12.33)

on X N which permits us to regard µn as a measure on (X N,Fn). The kernels qn are
then to be interpreted as Fn-measurable maps on X N

ˆ Fn+1 Ñ [0, 1]. This means
that qm(x, ¨) depends only on the first m coordinates of x.

The union A :=
î

n•1 Fn is an algebra and, since (12.31) implies consistency, there
exists a finitely-additive set function µ̄ on A that restricts to µn on Fn. If we can show
that µ̄ is countably subadditive, the Hahn-Kolmogorov theorem (Theorem 1.4) implies
that µ̄ extends to a measure on F := s(A). For this it suffices to show that, given
any tBnun•1 in A,

Bn Ó H ñ lim
nÑ8 µ̄(Bn) = 0 (12.34)

Relabeling the sets if necessary, we may and will assume that Bn P F
bn for each n • 1.

We will prove the contrapositive but first we need some preparations. We start by
extending qn into a two-parameter quantity tqm,nu1§m§n by setting

qm,m+1(x, A) := qm(x, A), A P Fm+1 (12.35)

and, recursively,

qm,n+1(x, A) :=
ª
qn+1(z, A)qm,n(x, dz), A P Fn+1 (12.36)

By induction on m we then check that, for m † n,

qm,n(x, A) =
ª
qm+1,n(z, A)qm(x, dz), A P Fn (12.37)

We now define
hm,n(x) := qm,n(x, Bn) (12.38)

and note that (12.32) gives qm(x, Bn) = 1Bn(x) when n † m.
We now observe some properties of functions hm,n. First note that (12.37) gives

hm,n(x) =
ª

hm+1,n(z)qm(x, dz) (12.39)
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On the other hand, (12.36) and (12.32) imply that hm,n • hm,n+1 and so

hm(x) := lim
nÑ8 hm,n(x) (12.40)

exists in [0, 1]. Invoking this in (12.39) with the help of the Bounded Convergence Theo-
rem shows

hm(x) =
ª

hm+1(z)qm(x, dz) (12.41)

Since (12.31) gives
≥

h1,ndµm = µn(Bn) = µ̄(Bn) we also have

lim
nÑ8 µ̄(Bn) =

ª
h1dµ1 (12.42)

by another application of the Bounded Convergence Theorem.
Let us now suppose that infn•1 µ̄(Bn) ° d ° 0 for each n • 1. Then (12.42) gives

existence of x1 P X N such that h1(x1) ° d. Next observe that hm(x) ° d along with
(12.41) dictates

qm

⇣
x,
 

z P X N : hm+1(z) ° d
(⌘

° 0 (12.43)

and, by (12.32), there exists z P X N that agrees with x in the first m coordinates such that
hm+1(z) ° d. Using the Axiom of Choice, the above observations identify recursively
a sequence txmum•1 such that xn and xm agree on the first mintm, nu coordinates for
each m, n • 1 and such that hm(xm) ° d for each m • 1.

Taking x̄ whose n-th coordinate agrees with the n-coordinate of xn, the fact that hn
depends only on the first n coordinates of its argument implies hm(x̄) ° d for each
m • 1. But then also 1Bn(x̄) • hn(x̄) ° d and so x̄ P Bn for all n • 1. This shows that
infn•1 µ̄(Bn) ° 0 implies

ì
n•1 Bn ‰ H, proving the contrapositive of (12.34). ⇤

Recall that the proof of the Kolmogorov Extension Theorem also proceeds by proving
(12.34) by contrapositive, but the non-emptiness of the intersection is inferred using tools
from topology; namely, the Cantor intersection property applied to compact subsets
of X n whose existence is inferred by inner regularity of µn.

While condition (12.32), which was key in several steps of the above proof, is quite
restrictive it does hold in several interesting cases of prime interest; most notably, when
tµnun•1 are product measures or when they are generated by a Markov chain. The above
result thus offers an independent approach to the construction of infinite product mea-
sures and general-valued Markov chains. Note, however, that the Axiom of Choice was
used inside the proof.

Further reading: Durrett, Section 4.1.3
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13. INTRODUCTION TO MARTINGALES

The concept of conditional expectation is useful in analyzing dependent random vari-
ables. We will still need that this dependence has a certain structure. In the rest of 275B
course, we will explore two specific cases of such structures go under the respective
banners “Martingales” and “Markov chains” starting with the former here.

13.1 Definitions and examples.

We begin by introducting concepts that will be useful throughout.

Definition 13.1 (Stochastic process) A stochastic process (indexed by naturals) or just a

process is a sequence of random variables tXnun•0 defined on the same probability space.

If indexing is clear from context, we may refer to tXnun•0 as tXnu or just X.

Definition 13.2 (Filtration) Given a probability space (W,F , P), a sequence tFnun•0 of

sub-s-algebras of F is said to be a filtration if

@n • 0 : Fn Ñ Fn+1 (13.1)

Definition 13.3 (Adapted process) A process tXnun•0 is said to be adapted to filtration
tFnun•0, or just adapted, if Xn is Fn-measurable for each n • 0.

We should think of Fn as the information available about our stochastic setting at
“time” n. A natural choice of the filtration that makes a process tXkuk•0 adapted is

Fn := s(X0, . . . , Xn) (13.2)

As this is also the smallest filtration with this property and is generated by X, we some-
times write it as FX

n .

Definition 13.4 (Martingale) Given a filtration tFnun•0 and random variables tMnun•0,

the pair tMn,Fnun•0 is called a martingale if

(1) tMnun•0 is adapted to tFnun•0 and

(2) for all n • 0 we have Mn+1 P L1
with

E(Mn+1|Fn) = Mn a.s. (13.3)

If instead the same inequality holds in (13.3) for all n • 0 we call the sequence tMn,Fnun•0

‚ a submartingale if E(Mn+1|Fn) • Mn for all n • 0,

‚ a supermartingale if E(Mn+1|Fn) § Mn for all n • 0.

A martingale is thus a submartingale and a supermartingale.

A natural way to think of a martingale is the winning in a “fair” game. Indeed, the
condition (13.3) can also be written as

E(Mn+1 ´ Mn|Fn) = 0 (13.4)

so if Mn represents the amount of money a player won (if Mn • 0) or lost (if Mn † 0) at
time n, then the martingale property means that there is no bias in the game, at least in
terms of expectation. (The Gambler’s ruin problem analysis shows that there is effectively
a bias if you play against a more wealthy opponent.)
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Here is a remark on notation. To reduce clutter, we will often write tFnu instead
of tFnun•0 and tMn,Fnu instead of tMn,Fnun•0 unless confusion may arise. We may
even suppress the reference to the filtration altogether when it is clear from the context
and even write just M for tMnu.

Here are some simple examples of martingales:

Example 13.5 (Additive martingale) Let tXkuk•1 be independent with

@k • 1 : Xk P L1
^ EXk = 0 (13.5)

Set Mn := X1 + ¨ ¨ ¨ + Xn with M0 := 0 and let Fn := s(X1, . . . , Xn). Then tFnu is a
filtration and Mn is Fn-measurable for each n • 0. Moreover,

E(Mn+1|Fn) = Mn + E(Xn+1|Fn) = Mn a.s. (13.6)

because Xn+1 is independent of Fn and thus E(Xn+1|Fn) = E(Xn+1) = 0. Hence
tMn,Fnu is a martingale. Clearly, if instead @k • 1 : E(Xk) • 0, then tMn,Fnu is a
submartingale.

Example 13.6 (Multiplicative martingale) Let X1, X2, . . . be independent with

@k • 1 : Xk P L1
^ Xk • 0 ^ EXk = 1 (13.7)

Set Mn :=
±n

k=1 Xk with M0 := 1 and let Fn := s(X1, . . . , Xn). Then again Mn is Fn-
measurable for each n • 0 and

E(Mn+1|Fn) = MnE(Xn+1|Fn) = Mn a.s. (13.8)

Hence tMn,Fnu is again a martingale.

Here is another way to generate a martingale:

Example 13.7 (Progressive conditioning) Let X P L1 and let tFnu be a filtration. Set

Mn := E(X|Fn) (13.9)

Then
E(Mn+1|Fn) = E

�
E(X|Fn+1)

ˇ̌
Fn
�
= E(X|Fn) = Mn a.s. (13.10)

by the “Smaller always wins” principle. Hence tMn,Fnu is a martingale.

Conditioning on filtration is a way to reveal more information about the stochastic
setting. Note that a “finite run” of a martingale is always of the above form; indeed, if
tMk,Fku

n
k=0 is a martingale, then

@k = 0, . . . , n : Mk = E(Xn|Fk) a.s. (13.11)

It is an interesting question whether (and under what conditions) an infinite martin-
gale sequence can be expressed this way. This will be resolved when we introduce the
concept of uniform integrability.

13.2 Derived examples.

In order to give our next two examples, we note:
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Lemma 13.8 Let f : R Ñ R be convex and let tMnun•0 be a process such that f(Mn) P L1

for each n • 0. Then
(1) tMn,Fnu a martingale ñ tf(Mn),Fnu a submartingale.
(2) tMn,Fnu a submartingale and f is non-decreasing ñ tf(Mn),Fnu a submartingale.

Proof. By Jensen’s inequality

E
�
f(Mn+1)

ˇ̌
Fn
�

• f
�
E(Mn+1|Fn)

�
(13.12)

The right hand side equals f(Mn) when tMn,Fnu is a martingale. If the latter is only a
submartingale, then we still have

f
�
E(Mn+1|Fn)

�
• f(Mn) (13.13)

as soon as f is non-decreasing. ⇤
This lemma stimulates additional examples of interest:

Example 13.9 (Variance martingale) Lemma 13.8 says that if tMn,Fnu is a martingale
and @n • 1 : Mn P L2, then tM2

n,Fnu is a submartingale. However, we can say more
if M is an additive martingale, i.e., Mn := X1 + ¨ ¨ ¨+ Xn for independent X1, X2, . . . with
@i • 1 : Xi P L1

^ EXi = 0 and Fn := s(X1, . . . , Xn). Indeed, assuming @i • 1 : Xi P L2,
we can compute the “martingale defect” as

E(M2
n+1|Fn) = E

�
M2

n + 2MnXn+1 + X2
n+1

ˇ̌
Fn
�

= M2
n + 2MnE(Xn+1|Fn) + E(X2

n+1|Fn) = M2
n + E(X2

n+1)
(13.14)

This suggest setting

ÄMn := M2
n ´

nÿ

k=1

E(X2
i ) (13.15)

for which we readily check that tÄMn,Fnu is a martingale.

The calculation in the previous example used that the martingale increments were
independent, but pretty much the same can be done even if they are not. We start by
introducing a convenient terminology:

Definition 13.10 We say that M = tMnu is an Lp
-martingale if @n • 0 : Mn P Lp

.

We then have:

Lemma 13.11 Let tMn,Fnu be an L2-martingale. Set

ÄMn := M2
n ´

nÿ

k=1

E
�
(Mk ´ Mk´1)

2 ˇ̌
Fk
�

(13.16)

Then tÄMn,Fnu is a martingale.

Proof. The process tÄMnu is clearly adapted to tFnu. Noting that

M2
n+1 ´ M2

n = (Mn+1 ´ Mn)
2 + 2Mn(Mn+1 ´ Mn) (13.17)
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we get

E(M2
n+1|Fn) ´ M2

n = E
�
(Mn+1 ´ Mn)

2 ˇ̌
Fn
�
+ 2MnE(Mn+1 ´ Mn|Fn)n

= E
�
(Mn+1 ´ Mn)

2 ˇ̌
Fn
�

a.s.
(13.18)

where all conditional expectations are defined because Mn, Mn ´ Mn´1 P L2. We now
check by induction that this gives E(ÄMn+1|Fn) = ÄMn a.s. ⇤

We will elaborate on the setting of Lemma 13.11 further when we discuss so called
Doob’s decomposition. The calculation in the previous proof suggests another way to
build a martingale out of a martingale. We need:

Definition 13.12 (Predictable process) Given a filtration tFnu, a process tCnu is said to

be predictable if

C0 := 0 ^ @n • 1 : Cn is Fn´1-measurable (13.19)

Definition 13.13 Given two processes C = tCnu and X := tXnu, we define C ¨ X to be

the process t(C ¨ X)nun•0 where

(C ¨ X)n :=
nÿ

k=1

Ck(Xk ´ Xk´1), n • 1 (13.20)

and (C ¨ X)0 := 0. We sometimes refer to (C ¨ X)n as a discrete stochastic integral.

The term predictable reflects on the fact that the value of Cn is already “known” at
“time” n ´ 1. A natural interpretation of C ¨ X is the outcome of a betting strategy in a
game encoded by X. Indeed, if a player bets Cn+1 dollars in the round where betting
one dollar earns her Xn+1 ´ Xn, her winnings in that round will be

Cn+1(Xn+1 ´ Xn) (13.21)

The quantity (C ¨ X)n is thus the total amount won by time n.
We now observe that, unless the player can predict the future, betting on a fair game

results in a fair game:

Lemma 13.14 Given a filtration tFnu, let C := tCnu be a predictable process and M := tMnu

be a process. Assume @n • 0 : Cn P L8. Then

M martingale ñ C ¨ M martingale (13.22)

and
M submartingale ^ @n • 1 : Cn • 0 ñ C ¨ M submartingale (13.23)

Proof. The assumptions ensure that (C ¨ M)n P L1 for all n • 1. The construction gives
that C ¨ M is adapted. Using the same calculation as in the previous proof, we thus get

E
�
(C ¨ M)n+1

ˇ̌
Fn
�
= (C ¨ M)n + E

�
Cn(Mn+1 ´ Mn)

ˇ̌
Fn
�

= (C ¨ M)n + CnE(Mn+1 ´ Mn |Fn)
(13.24)

where we used that C is predictable in the second step. The last term vanishes when M
is a martingale and is non-negative if M is a submartingale and Cn • 0. ⇤
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We now return back to effects of composing a martingale with convex function:

Example 13.15 (Exponential martingale) Another way to turn an additive martingale
into an interesting submartingale is by applying the exponential function. Indeed, sup-
pose that tXnun•1 are independent and such that E(elXn) † 8 for all n • 1. If also
Xn P L1 and EXn = 0 for all n • 1, then Mn := X1 + ¨ ¨ ¨+Xn is a martingale. Lemma 13.8
then tells us that telMn u is a submartingale.

Thanks to the underlying independence structure we can get more. Indeed,

E
�
elMn+1

ˇ̌
Fn
�
= E

�
elMn elXn+1

ˇ̌
Fn
�
= elMn E

�
elXn+1

�
(13.25)

where Lemma 11.3 was used to get the second equality, and so setting

ÄMn := elMn

nπ

k=1

jk(l)
´1 where jn(l) := E(elXn) (13.26)

we get that tÄMnu is a martingale.

13.3 Two “practical” examples.

We will close our introduction by giving two examples that concern “practical” models
that are of much interest throughout probability. What makes them interesting for us
that they also give rise to natural martingales.

Example 13.16 (Galton-Watson branching process) In mid 19th century, there was some
interest in developping a theory of family trees — particularly, in connection with royal
families. Two statisticians (by standards back then) F. Galton and H.W. Watson (and also
independently I.J. Bienaymé) devised a model that nowadays serves as a foundation for
such considerations.

In the (Bienaymé)-Galton-Watson model, there are generations indexed by natural-
valued “time.” Each generation contains a certain number of currently living individ-
uals. The population dynamics is such that, at each time, each individual produces
a certain number of off-spring, which is sampled independently from a common law
on N with probability mass function tp(n) : n • 0u, called the off-spring distribution. (In
particular, if there is no off-spring, the lineage of that individual dies out.) The num-
ber of individuals in the next generation is then the sum of all off-spring counts for the
current generation.

We will formalize the problem as follows. Consider a family of i.i.d. integer-valued
random variables tXn,k : n, k • 0u with law determined by

P(Xn,k = m) = p(m), m • 0. (13.27)

Define, inductively, random variables tSnu as follows: S0 := 1 and

Sn+1 :=

#
0, if Sn = 0,
Xn+1,1 + ¨ ¨ ¨ + Xn+1,Sn , if Sn ° 0.

(13.28)

It is easy to verify that the dynamics does what we described above. The additional
assumption S0 := 1 means that there is one individual at time zero.
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Consider now the filtration Fn := s(Xm,k : 0 § m § n, k • 0) and let us compute:

E(Sn+1|Fn) =

#
0, on tSn = 0u,
[E(X1,1)]Sn, on tSn ° 0u.

(13.29)

Thus, denoting µ := E(X1,1) we get that Mn := µ´nSn defines a martingale. The value
µ = 1 is obviously special because tSnu is then itself a martingale.

Example 13.17 (Polya’s Urn) Our next example concerns an urn problem. Fix integers
r, g • 1 and b • 1 and consider an urn that, initially, has r red balls and g green balls
in it. Sample a ball from the urn and put it back along with b balls of the same color.
(NOTE: We changed parametrization compared to the lecture!) Repeating this step over
and over, the question is what is the fraction of the red balls in the urn in the long run.

Let Rn denote the number of red balls in the urn at time n and let Gn denote the
corresponding number of green balls. Obviously, Rn + Gn = r + g + bn. Now consider
the random variable

Mn :=
Rn

Rn + Gn
=

Rn

r + g + bn
(13.30)

which denotes the fraction of red balls in the urn.
We will encode the dynamics of the urn using a sequence U1, U2, . . . of i.i.d. uniform

random variables on [0, 1] by way of the recursions

Rn+1 := (Rn + b)1tUn+1§Mnu + Rn1tUn+1°Mnu. (13.31)

and
Gn := r + g + bn ´ Rn (13.32)

subject to the initial value R0 := r (which gives G0 = g). If set this way, we have:

Lemma 13.18 tMn,Fnu is a martingale for the filtration Fn := s(U1, . . . , Un).

Proof. Abbreviate Nn := r + g + bn. Since Rn and Mn are Fn-measurable, we have

E(Mn+1 |Fn) =
Rn + b
Nn+1

E(1tUn+1§Mnu|Fn) +
Rn

Nn+1
E(1tUn+1°Mnu|Fn)

=
Rn + b
Nn+1

Rn

Nn
+

Rn

Nn+1

Gn

Nn
=

Rn

Nn

Rn + bn + Gn

Nn+1
=

Rn

Nn
= Mn

(13.33)

implying the claim. ⇤

We will keep returning to the above examples in the the forthcoming lectures.

Further reading: Durrett, Sections 4.2 and 4.3
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14. OPTIONAL STOPPING AND SAMPLING

In this section we will elaborate on the following property of martingales: Suppose that
tMn,Fnu is a martingale. Then

E(Mn+1) = E
�
E(Mn+1|Fn)

�
= E(Mn) = . . .loomoon

induction

= E(M0) (14.1)

and so E(Mn) does not depend on n. (Similarly, for submartingales we get E(Mn) •

E(M0) and for supermartinagles we get E(Mn) § E(M0).) The question to address here
is when we have E(MT) = E(M0) for a random time T.

14.1 Optional stopping theorem.

Of course, not just any random time will do because we could simply let the sequence
run until it becomes larger than M0 or smaller than M0 (one of these will occur a.s. for
every non-constant sequence). In short, the random time should not be allowed to “look
into the future.” This leads to the following concept:

Definition 14.1 (Stopping time) A random variable T taking values in N Y t+8u is a

stopping time for filtration tFnu if

@n • 0 : tT § nu P Fn (14.2)

We leave it to the reader to check that equivalent definition is obtained when tT § nu

is replaced by tT ° nu or by tT = nu. Here is one standard example:

Lemma 14.2 (First hitting time of a set) Let tXnu be an S-valued process adapted to filtra-
tion tFnu. Then for all measurable sets A Ñ S and any stopping time T1 for tFnu,

T := inftn • T1 : Xn P Au (14.3)

is a stopping time.

Proof. For each n P N we have

tT ° nu =
n£

k=0

tXk R Au X tT1
§ ku (14.4)

As X is adapted and T1 is a stopping time, tXk R Au X tT1
§ ku P Fk Ñ Fn. Hence we

get tT § nu P Fn for all n • 0. ⇤
Note that a deterministic time is a stopping time, so we can take T1 to be one above.

The formulation with T1 random allow us to iterate this definition. Stopping times are
preserved under a number of operations. Here is a list:

Lemma 14.3 Let T and S be stopping times. Then so are T ^ S, T _ S and T + S.

Proof. For each n P N we have

tT ^ S § nu = tT § nu X tS § nu (14.5)
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and
tT _ S § nu = tT § nu Y tS § nu (14.6)

proving that T ^ S and T _ S are stopping times. For the sum we have

tT + S § nu =
n§

m=0
tT = mu X tS § n ´ mu (14.7)

and note that tT § mu = tT § mu r tT § m ´ 1u P Fm Ñ Fn when m § n. ⇤
We now return back to the question of whether martingales evaluated at stopping

times are still martingales.

Lemma 14.4 (Stopped (sub)martingale) Suppose tMn,Fnu is a (sub)martingale and T is a
stopping time for tFnu. Then

@n P N : MT^n P L1
^ tMT^n,Fnu is a (sub)margingale (14.8)

Proof. Since T ^ n is Fn-measurable, so is MT^n due to the representation

MT^n =
nÿ

k=0

Mk1tT=ku + Mn1tT°nu (14.9)

Moreover,

|MT^n| §

nÿ

k=0

|Mk| (14.10)

and so MT^n P L1. For the proof of (sub)martingale property, we need the identities

MT^n = MT^n1tT§nu + Mn1tT°nu (14.11)

and
MT^(n+1) = MT^n1tT§nu + Mn+11tT°nu (14.12)

For tMn,Fnu a martingale, the fact that all object on the right of these except Mn+1
are Fn-measurable shows

E
�

MT^(n+1)
ˇ̌
Fn
�
= MT^n1tT§nu + 1tT°nuE(Mn+1|Fn)

= MT^n1tT§nu + Mn1tT°nu = MT^n
(14.13)

For submartinagles the second equality is changed into •. ⇤
We are now ready for the first main conclusion:

Theorem 14.5 (Doob’s Optional Stopping Theorem) Let tMn,Fnu be a martingale and T
a stopping time for tFnu. Suppose there exists K P (0, 8) such that at least one of the conditions

(1) T § K a.s.
(2) T † 8 a.s. ^ @n • 0 : |Mn| § K a.s.
(3) ET † 8 ^ @n • 0 : |Mn+1 ´ Mn| § K a.s.

holds true. Then
MT P L1

^ E(MT) = E(M0) (14.14)
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Proof. By the previous lemma we have MT^n P L1 and E(MT^n) = E(M0). When T § K
a.s., setting n ° K makes truncation by n superfluous and so the claim follows.

For (2-3) we will now obtain statements by using an appropriate convergence theo-
rem. In both cases we have T † 8 a.s. and so

MT^n ›Ñ
nÑ8 MT, a.s. (14.15)

In (2) we have |MT^n| § K and so |MT| § K as well. The Bounded Convergence Theorem
then gives E(MT^n) Ñ EMT.

In (3) we instead note that

MT^n = M0 +
T^nÿ

k=1

(Xk ´ Xk´1) (14.16)

Using that |Xk ´ Xk´1| § K a.s. this implies

@n • 0 : |MT^n| § |M0| + K(T ^ n) § |M0| + KT a.s. (14.17)

Since M0, T P L1, the Dominated Convergence Theorem yields the claim. ⇤

14.2 Applications to random walks.

To illustrate the above, we will consider the example of a random walk. We start with
the simplest instance of all:

Definition 14.6 The simple (symmetric) random walk started at zero is a process tSnu

such that S0 := 0 and Sn := X1 + ¨ ¨ ¨ + Xn for tXkuk•1 i.i.d. t+1, ´1u-valued random

variables with P(Xk = +1) = P(Xk = ´1) = 1/2.

Clearly, the simple random walk is a Z-valued additive martingale for the filtration
Fn := s(X1, . . . , Xn). The “walker” strides over the integers by choosing, at each time, a
neighbor of the current position uniformly at random.

Our prime interest is concerned with the hitting times of integer level sets,

Ta := inftn • 0 : Sn = au, a P Z (14.18)

which are stopping times by Lemma 14.2. Note that

@a P Z r t0u : ETa = 8 (14.19)

for ETa † 8 along with |Sk+1 ´ Sk| § 1 would enable Theorem 14.5(3) leading to a
contradiction because ESTa = a ‰ 0 yet ES0 = 0.

In order to study these hitting times better, we will confine the walk to a finite set by
considering the stopping time Ta ^ Tb where a † 0 † b. The following is relegated to a
homework assignment:

Lemma 14.7 For all integer a † 0 † b we have Ta ^ Tb † 8 a.s.

With this in hand, we now state:
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Lemma 14.8 For all integer a † 0 † b,

P
�
Ta † Tb) =

b
b ´ a

(14.20)

In particular,
@a P Z : Ta † 8 a.s. (14.21)

In short, the simple random walk visits every integer with probability one.

Proof. Given integers a † 0 † b abbreviate T := Ta ^ Tb. Since ST^n is bounded and, by
Lemma 14.7, T † 8 a.s., the argument in the proof for case (2) in Theorem 14.5 implies

E(ST) = E(S0) = 0. (14.22)

Noting that ST = a on tTa † Tbu and ST = b when tTb ° Tau along with the fact that
tTa † Tbu Y tTb ° Tau is a disjoint partition of full measure set tT † 8u gives

0 = E(ST) = aP(Ta † Tb) + bP(Tb † Ta)

= aP(Ta † Tb) + b
⇥
1 ´ P(Ta † Tb)

⇤ (14.23)

Simple algebra now shows (14.20). For the second part we note that Tb • b and so Tb Ñ

8 as b Ñ 8. Using this in (14.20) implies P(Ta † 8) = 1 for all integer a † 0. The
positive cases follow similarly by taking a Ñ ´8. (The case of a = 0 is trivial.) ⇤

Reiterating, the simple random walk visits every integer with probability one but,
with the exception of the starting point, the time this takes has infinite mean. A question
arises whether more can be said about the distribution of Ta. This is answered in the
next claim whose proof we relegate to a homework assignment.

Lemma 14.9 For all a P Z and all l • 0,

E(e´lTa) =

✓
1

el +
?

e2l ´ 1

◆|a|
(14.24)

In particular, E(Ts
a) † 8 for s † 1/2 and E(T1/2

a ) = 8 for all a ‰ 0.

We remark that the distribution of Ta can be given very explicitly using the so called
Reflection Principle to which we will get later in this course.

Remark 14.10 Inspired by the proof of Lemma 14.8 we can ask whether there are other
functions j : Z Ñ R such that tj(Sn)u is a martingale for tSnu denoting a simple random
walk. Such a function must obey

@n P Z : j(n) =
1
2
⇥
j(n ´ 1) + j(n + 1)

⇤
(14.25)

which a mean-value property defining so called discrete harmonicity. As is readily
checked by rewriting this as j(n + 1) ´ j(n) = j(n) ´ j(n ´ 1), every function with
this property is necessarily linear. This, however, becomes far more interesting when we
allow the steps to have a more general distribution (still confined to Z).
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While the Optional Stopping Theorem is very useful in general, in most situations
it requires additional truncation arguments to get the desired conclusion. Here is one
instance of this, drawing on Examples 13.5 and 13.9:

Theorem 14.11 (Wald’s equations) Given i.i.d. X1, X2, . . . set Sn = X1 + ¨ ¨ ¨ + Xn and
let T be a stopping time for the filtration Fn := s(X1, . . . , Xn). Then

(1) X1 P L1 and T P L1 imply

ST P L1
^ EST = (ET) EX1 (14.26)

(2) X1 P L2, EX1 = 0 and T P L1 imply

ST P L2
^ E(S2

T) = (ET) E(X2
1) (14.27)

Note that applying alternative (3) in Theorem 14.5 to martingales tSn ´ nEX1u for (1)
and tS2

n ´ nE(X2
1)u for (2) is not allowed because their increments are not bounded. The

proof of (2) requires Theorem 14.17 from the next subsection and also the concept of
uniform integrability two lectures down the road. We leave details to homework.

14.3 Optional sampling theorem.

We will now take our previous discussion to another level and ask whether one can even
apply the identity

@k § n : E(Mn|Fk) = Mk a.s. (14.28)
to random times. For this we have to give a meaning to Fk for k replaced by a random
variable. We first observe:

Lemma 14.12 For any stopping time T for a filtration tFnu on a probability space (W,F , P),

FT :=
 

A P F : (@n • 0 : A X tT § nu P Fn)
(

(14.29)

is a s-algebra.

Proof. Since intersection of any number of s-algebras is a s-algebra, it suffices to show
that, given s-algebras G and F on W and B P G,

A := tA P F : A X B P Gu is a s-algebra (14.30)

For this we observe that H, W P A and check that A and is closed under intersections
and increasing limits. Since Ac

X B = B r (A X B) P G when B, A X B P G, it is also
closed under complements and so it is a s-algebra. ⇤

Definition 14.13 We call FT the s-algebra of events measurable by stopping time T.

The reader should not try to think of FT as a random s-algebra. Rather, FT is merely
a collection of sets associated with function T on a probability space. Still, FT behaves
very much like the original filtration:

Lemma 14.14 Let T and S be stopping times for filtration tFnu. Then

FT^S = FT X FS (14.31)
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In particular,
S § T ñ FS Ñ FT (14.32)

(The inequality S § T must hold pointwise, not just pointwise a.s.!)

We leave the proof of this to an exercise. Next we need:

Lemma 14.15 Let tXnu be adapted to tFnu and T be a finite stopping time for tFnu. Then
both T and XT are FT-measurable.

Proof. For all m, n P N we have tT § mu X tT § nu P Fn and so tT § mu P FT for
all m • 0, implying measurability of T. For measurability of X pick B P B(R) and note

@n • 0 : tXT P Bu X tT = nu = tXn P Bu X tT = nu P Fn (14.33)

Hence tXT P Bu P FT, implying measurability of XT. ⇤
In oder to state the next claim, we introduce the following concept:

Definition 14.16 We say that a martingale tMn,Fnu admits a last element if there exists

M8 P L1
such that

@n • 0 : E(M8|Fn) = Mn a.s. (14.34)

Note that this means that the martingale is exactly of the kind discussed in Example 13.7.
The reason for introducing the last element is that this gives us a way to define

MT := M8 on tT = 8u (14.35)

With all the notions in place, we claim:

Theorem 14.17 (Optional sampling) Let T and S be finite stopping times and tMnu a mar-
tingale for filtration tFnu. Assume that S § T pointwise and that MT^n Ñ MT P L1. Then

E
�

MT|FS) = MS a.s. (14.36)

If tMnu admits a last element, then the above works for all stopping times with S § T.

Proof. Recall that MT^n is a martingale and observe that, given any A P FS, we have
A X tS = ku P Fk for all k • 0. Assuming k § n, we thus get

E
�
1AXtS=kuMT^n

�
= E

�
1AXtS=kuE(MT^n|Fk)

�

= E
�
1AXtS=kuMT^k

�
= E

�
1AXtS=kuMS^n

� (14.37)

where the last equality uses that MT^k = MS^n on tS = ku thanks to S § T and k § n.
Note that S § T also implies

E
�
1AXtS°nuMT^n

�
= E

�
1AXtS°nuMn

�
= E

�
1AXtS°nuMS^n

�
(14.38)

Summing (14.37) over k = 0, . . . , n and adding the result to (14.38) yields

@A P FS @n • 0 : E
�
1A MT^n

�
= E(1A MS^n

�
(14.39)

By Lemma 14.14 we have FS^n Ñ FS and, by Lemma 14.15, MS^n is thus FS-measurable.
Hence we get

@n • 0 : E(MT^n|FS) = MS^n a.s. (14.40)
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proving the claim for bounded stopping times.
In order to prove the claim for unbounded stopping times, we take n Ñ 8. Observe

that the stated assumption MT^n Ñ MT in L1 implies MT P L1 and the continuity of the
conditional expectation in L1-norm then gives

E(MT^n|FS)
L1

›Ñ
nÑ8 E(MT|FS) (14.41)

From (14.40) it follows that tMS^nu converges in L1 to a random variable Y. Since L1-
convergence implies a.s. convergence along a deterministic subsequence, the fact that
MS^n Ñ MS as n Ñ 8 implies Y = MS a.s. on tS † 8u, which proves the claim for
finite stopping times. For stopping times taking possibly value +8 we also need to
observe that S § T gives

MS^n = MT^n
L1

›Ñ
nÑ8 MT = MS on tS = 8u (14.42)

and so Y = MS a.s. in this case as well. ⇤
The same statement holds for submartingales and supermartingales; the equality in

(14.36) then becomes the corresponding inequality. Theorem 14.17 is particularly useful
when we choose to observe our process only along an increasing sequence tTnu of stop-
ping times because it says that, if our original process was a (sub)martingale, so is the
new process as well, albeit now with respect to the filtration tFTn u.

Further reading: Durrett, Sections 4.8 and 4.9
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15. MARTINGALE CONVERGENCE THEOREM

One (albeit rather simplistic) way to think of submartingales and supermartingales is
as stochastic analogues of monotone sequences of numbers which, we note, converge
either to a point in R or to one of the infinities. Here we demonstrate some validity
of this intuition by showing that, under mild moment assumptions on the “dangerous”
tail, the same holds for the random analogues.

15.1 Up-crossings and convergence.

Our task here will be to prove:

Theorem 15.1 (Doob’s Martingale Convergence Theorem) Suppose tXn,Fnu is a super-
martingale with supn•0 E(Xń ) † 8. Then

X8 := lim
nÑ8 Xn exist a.s. and X8 P L1 (15.1)

In particular, X8 P R a.s.

We will actually present two proofs, one here and the other in the next lecture. Key
for both of them is control of the oscillation of the sequence tXnu as n Ñ 8. In our
first proof we will achieve that explicitly by estimating the number of up-crossings of an
interval. This requires some definitions and notation.

T1 T1
1 T2 T1

2 T3

a

b

Let a † b be two reals. We will follow the sequence tXnu until the first time it dips
below a, marking that first time as T1. Then we proceed until the sequence first climbs
above b, marking that time by T1

1. Then we again wait until the sequence dips below a,
marking that time T2, and then until it climbs above b, marking that time as T1

2; see figure
above. This leads to the following sequence of stopping times

T1
0 † T1 † T1

1 † T2 † T1
2 † . . . (15.2)

defined recursively as follows: Set T1
0 := 0 and for i • 1 let

Ti := inftn ° T1
i´1 : Xn † au

T1
i := inftn ° Ti : Xn ° bu

(15.3)
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We now write
Un[a, b] := maxtk • 0 : T1

k § nu (15.4)
for the number of (completed) up-crossings of [a, b] by time n. Clearly Un[a, b] § n and
n fiÑ Un[a, b] is non-decreasing in n. A key ingredient of the proof comes in:

Lemma 15.2 (Upcrossing inequality) Suppose X is a supermartingale. Then for all a † b,

EUn[a, b] §
E
⇥
(Xn ´ a)´⇤

b ´ a
(15.5)

Proof. Define a t0, 1u-valued process tCnu as follows: Set C0 := 0 and, recursively, let

Cn+1 := 1tCn=1u1tXn§bu + 1tCn=0u1tXn†au (15.6)

It is easy to check that

@k • 0 : Ck = 1 ô Di • 0 : k P (Ti, T1
i ] (15.7)

The definition (15.6) also ensures that C is predictable. Now consider the process C ¨ X.
Writing Un for Un[a, b], the special form of C then yields

(C ¨ X)n =
Unÿ

i=1

(XT1
i

´ XTi) + 1tTUn+1†nu(Xn ´ XTUn+1) (15.8)

But XT1
i

´ XTi • b ´ a while Xn ´ XTUn+1 • Xn ´ a • ´(Xn ´ a)´ and so

(C ¨ X)n • (b ´ a)Un[a, b] ´ (Xn ´ a)´ (15.9)

On the other hand, since Cn • 0 and X is a supermartinagle,

E((C ¨ X)n) § E((C ¨ X)0) = 0 (15.10)

Putting these together we get

(b ´ a)EUn[a, b] ´ E
⇥
(Xn ´ a)´⇤

§ 0 (15.11)

This gives the claim by a simple manipulation. ⇤
We are ready to give:

Proof of Theorem 15.1. The monotonicity of n fiÑ Un[a, b] permits us to define

U8[a, b] := lim
nÑ8 Un[a, b] (15.12)

Thanks to the assumption,

sup
n•0

E
⇥
(Xn ´ a)´⇤

§ |a| + sup
n•0

E(X´
n ) † 8 (15.13)

and so, by the Upcrossing Inequality, also supn•0 EUn[a, b] † 8. Invoking the Monotone
Convergence Theorem we then get that EU8[a, b] † 8 and thus

@a † b : U8[a, b] † 8 a.s. (15.14)

with the null set depending possibly on a and b.
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Next we note that
 

lim inf
nÑ8 Xn † a † b † lim sup

nÑ8
Xn

(
Ñ U8[a, b] (15.15)

Hence we get  
lim inf

nÑ8 Xn † lim sup
nÑ8

Xn
(

Ñ

§

a,bPQ
a†b

 
U8[a, b] = 8

(
(15.16)

In particular, from (15.14) we we now get

Xn ›Ñ
nÑ8 X8 := lim sup

nÑ8
Xn, a.s. (15.17)

It remains to show that X8 P L1. For that we note that Fatou’s Lemma ensures

E(X´
8) § lim inf

nÑ8 E(X´
n ) § sup

n•0
E(X´

n ) † 8 (15.18)

and so the lower tail of X8 is integrable. For the upper tail we use X+
n = Xn + Xń to get

E(X+
n ) = E(Xn) + E(X´

n ) § E(X0) + sup
n•0

E(X´
n ) † 8 (15.19)

where the middle inequality follows because X is a supermartingale. Invoking Fatou’s
Lemma again, we get E(X+8) † 8 as well. ⇤

As we will see later, the Martingale Convergence Theorem has many important con-
sequences. The advantage is that one only needs a uniform bound on the integral of
of the tail towards which the expectations go — which means the lower tail for super-
martingales and the upper tail for submartingales. For martingales it suffices to check
just one, whichever is convenient. A useful special case is:

Corollary 15.3 A non-negative supermartingale converges a.s. to an L1-random variable.

15.2 Some simple applications.

To demonstrate the power of the theorem, we prove convergence some of the martin-
gales we discussed earlier. We begin with that associated with Pólya’s urn.

Lemma 15.4 Let tMnu be the martingale expressing the fraction of red balls in Pólya’s urn.
Then M8 := limnÑ8 Mn exists a.s. and M8 P [0, 1] a.s.

Proof. Since tMnu is an [0, 1]-valued martingale, this follows from Corollary 15.3. ⇤
While having the convergence is nice, we do not learn anything about the distribution
of M8. This will be further elaborated on when we discuss exchangeability.

Next we move to the Galton-Watson branching process:

Lemma 15.5 Let tp(n)u denote the off-spring distribution. Then

µ :=
ÿ

k•0

kp(k) § 1 ^ p(0) ° 0 ñ P(Sn ° 0 i.o.) = 0 (15.20)

In words, a non-degenerate (sub)critical branching process dies out almost surely.
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Proof. Recall that tSnu is an N-valued supermartingale when µ § 1. By Corollary 15.3
again, S8 := limnÑ8 Sn exists and is N-valued a.s. Integer valued sequences converge
if and only if they are eventually constant and so for each m • 1,

tS8 = mu =
 

Sn ‰ m i.o.
(c

Ñ

" m£

k=1

tXn,k = 0u i.o.(n)
*c

(15.21)

As P(
ìm

k=1tXn,k = 0u) = p(0)m
° 0, the second Borel-Cantelli lemma tells us that the

last event occurs with probability zero for any m • 1. Hence, S8 = 0 a.s. ⇤
There is another martingale associated with Galton-Watson branching process. For

this we note:

Lemma 15.6 Let tSnu be a run of the Galton-Watson process with S0 = 1 a.s. For each t • 0,
let jn(t) := Ee´tSn . Then

@n • 0 : jn+1(t) = jn ˝ c(t) (15.22)
where

c(t) := ´ log
ÿ

k•0

p(k)e´kt (15.23)

In particular, if t‹ • 0 is such that c(t‹) = t‹, then te´t‹Sn u is a martingale.

The lemma actually implies that jn(t) = e´cn(t), where cn is the n-fold composition
of c with itself. Since c is checked to be non-decreasing and concave with c1(0) = µ
(including µ = 8), assuming that p(0) ° 0 the iterations tend to zero as n Ñ 8 for µ § 1
but converge to the nontrivial intersection of t fiÑ c(t) has with the diagonal when µ ° 1.
In both cases we get the existence of a fixed point t‹ with the above properties for which
one can moreover show that

e´t‹ = P(Dn • 0 : Sn = 0) (15.24)

We leave the proof of these facts to homework. More advanced application of martingale
convergence will be discussed in the next lectures.

Further reading: Durrett, Sections 4.2 and 4.3
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16. APPLICATIONS OF MARTINGALE CONVERGENCE

Here we give some applications of martingale convergence that can all be collected un-
der the banner differentiation theorems.

16.1 Connection to Lebesgue differentiation.

We start with a connection to differentiation of integrals. This is a topic that was devel-
oped in order to prove that differentiation inverts integration. In Newton/Cauchy/Rie-
mann integral theory is known under the title Fundamental Theorem of Calculus and is
the source of known complication with the associated integral. Lebesgue theory resolves
this in a very elegant way.

Let µ be a Borel probability measure on Rd. We will partition Rd into disjoint trans-
lates of [0, 2´n)d. For each x P Rd let z be the unique point in Zd such that x P 2´nz +
[0, 2´n)d and let Bn(x) := 2´nz + [0, 2n)d denote the term in the partition that contains x.
Given h P L1(µ) define

hk(x) :=
1

µn(Bn(x))

ª

Bn(x)
hdµ (16.1)

when µn(Bn(x)) ° 0 and hk(x) := 1 otherwise. We then claim:

Proposition 16.1 For all h P L1(µ),

hn ›Ñ
nÑ8 h µ-a.e. (16.2)

Proof. Let h P L1(µ) and let X be distributed according to µ. Define

Fn := s
⇣ 

X P 2´nz + [0, 2´n)d(
: z P Zd

⌘
(16.3)

The fact that we partition Rd into dyadic boxes ensures that tFnu is a filtration. Since
E(h(X)|Fn) equals the (normalized) average of h against µ on Bn(X), we have

E(h(X)|Fn) = hn(X) a.s. (16.4)

But tE(h(X)|Fn)u obeys ››E(h(X)|Fn)
››

1 § }h(X)}1 (16.5)

and so Theorem 15.1 gives

hn(X) ›Ñ
nÑ8 Yh := lim sup

nÑ8
hn(X) a.s. (16.6)

Moreover, Fatou’s lemma implies

}Yh}1 § }h(X)}1 (16.7)

It remains to identify Yh in terms of h and X.
We plug into the standard argument from differentiation theory which notes that,

h continuous ñ @x P Rd : hn(x) ›Ñ
nÑ8 h(x) (16.8)
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In particular, we have Yh = h(X) a.s. for continuous h. Next note that, given h P L1(µ)
and g P L1(µ) continuous we have

hn(X) = gn(X) + (h ´ g)n(X) (16.9)

and so
Yh = g(X) + Yh´g a.s. (16.10)

implying
}Yh ´ g(X)}1 § }h(X) ´ g(X)}1 (16.11)

by way of (16.7). Taking a sequence tgkuk•1 of continuous functions such that gk Ñ h
in L1(µ), we get Yh = h(X) a.s. This is the desired claim. ⇤

We remark that, while the above is based on partitions into dyadic boxes, its slight
enhancement (to allow for Bn(x) = 2´n(z + z1) + [0, 2´n) where z P Zd is a unique
element such that 2nx P z + [0, 1)d and z1 is a fixed element of Zd) implies the standard
differentiation theorem from analysis (where Bn(x) is replaced by a box of sidelength 2´n

centered at x). The proof of the differentiation theorem in analysis is invariably based
on a maximal inequality of the form

@l ° 0 : µ
⇣

sup
n•1

| fn| ° l
⌘

§
C
l

} f }L1(µ) (16.12)

which allows for above reduction to continuous functions. Proving the maximal in-
equality is usually quite technical and requires tricks such as the “Rising-sun lemma” or
covering arguments due to Vitali or Besicovich. Our proof shows the relevant maximal
inequality (16.7) by way of the Martingale Convergence Theorem.

16.2 Proof of martingale convergence via maximal inequality.

Inspired by our previous example, we can ask whether the Martingale Convergence
Theorem can be proved by a maximal inequality as well. This is what we will show next
although only for martingales and only those that arise by progressive conditioning of
an L1 random variable.

We start with an inequality that generalizes Kolmogorov’s inequality from sums of
independent centered random variables:

Lemma 16.2 (Doob’s maximal inequality, enhanced version) Let X be a submartingale
with respect to filtration tFnu. Then for all 0 § k § n, all A P Fk and all l P R,

lP
✓

A X

!
max

j=k,...,n
Xj ° l

)◆
§ E

�
Xn1AXtmaxj=k,...,n Xj°lu

�
(16.13)

Proof. Denote
Ak := A X tXk ° lu (16.14)

and, for j = k + 1, . . . , n, set

A` := A X

!
max

j=k,...,`´1
Xj § l

)
X tX` ° lu (16.15)
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Then

A X

!
max

j=k,...,n
Xj ° l

)
=

n§

j=k

Aj (16.16)

with the union on the right disjoint. It follows that

P
✓

A X

!
max

j=k,...,n
Xj ° l

)◆
=

nÿ

j=k

P(Aj) (16.17)

Next observe that, since Aj is Fj-measurable, the submartinagle property of X implies

E(Xn1Aj) = E
�
E(Xn|Fj)1Aj

�
• E

�
Xj1Aj

�
• lP(Aj) (16.18)

for each j = k, . . . , n. Combining these we get

lP
✓

A X

!
max

j=k,...,n
Xj ° l

)◆
=

nÿ

j=k

lP(Aj)

§

nÿ

j=k

E(Xn1Aj) = E
�
Xn1AXtmaxj=k,...,n Xj°lu

�
(16.19)

where the last equality follows again from disjointness of the union in (16.16). ⇤
Notice that we claim the inequality even for l negative. This is because so can be the

right-hand side. As we will see, this detail enters quite crucially in:
Proof of Theorem 15.1 for Lévy martingales. Suppose tXnu such that, for some Y P L1,

@n • 0 : Xn = E(Y|Fn) a.s. (16.20)

Fix b P R, let l † b and fix A P
î

k•0 Fk. Consider the inequality (16.13) with k so large
that A P Fk. Using (16.20) to replace Xn by Y on the right and taking n Ñ 8 with the
help of upward monotonicity of n fiÑ maxk§j§n Xj then gives

lP
⇣

A X
 

sup
j•k

Xj ° l
(⌘

§ E
�
Y1

AXt supj•k Xj°l
(� (16.21)

Taking l Ò b with the help of Dominated Convergence replaces “° l” by “• b” on both
sides. Letting k Ñ 8 with the help of downward monotonicity of k fiÑ supj•k Xj shows

bP
⇣

A X
 

lim sup
nÑ8

Xn • b
(⌘

§ E
�
Y1

AXt lim supnÑ8 Xn•b
(� (16.22)

for any A P
î

n•0 Fn.
Next recall that, as shown in Carathéodory construction of measure, given an al-

gebra A, a measure µ on s(A) and e ° 0, for each A P s(A) there exists A1
P A

such that µ(A4A1) † e. It follows that the inequality (16.22) will be preserved by the
extension of both sides from A :=

î
n•0 Fn to s(A). In particular, (16.22) holds for

all A P F8 := s(
î

n•0 Fn).
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Given any a P R, a completely analogous argument with Xn replaced by ´Xn and b
by ´a shows that

aP
⇣

A X
 

lim inf
nÑ8 Xn • a

(⌘
• E

�
Y1

AXt lim infnÑ8 Xn•a
(� (16.23)

holds for all A P F8. We now apply (16.22–16.23) to A replaced by

Aa,b :=
!

lim inf
nÑ8 Xn † a † b † lim sup

nÑ8
Xn

)
(16.24)

which obviously belongs to F8. This gives

@a † b : bP(Aa,b) § E(Y1Aa,b) § aP(Aa,b) (16.25)

implying
@a † b : P(Aa,b) = 0 (16.26)

On the complement of the union of Aa,b over all a, b P Q with a † b, every interval with
rational points will be crossed only finitely many times by tXnu. Hence we get

Xn ›Ñ
nÑ8 X8 := lim sup

nÑ8
Xn a.s. (16.27)

Using (16.20), we have E|X8| § E|Y| a.s. and so X8 P L1. ⇤
We do not know whether the argument can be adapted to include martingales that are

not of the form (16.20). This would matter because, as we will show in Lévy’s Forward
Theorem (Theorem 17.11) below,

E(Y|Fn) ›Ñ
nÑ8 E(Y|F8) a.s. (16.28)

so if Y is F8-measurable then nothing “new” is discovered in the limit. (Still, the above
gives the convergence part of the proof of Theorem 17.11.) The restriction to martingales
can be relaxed to sub/supermartingales, provided we invoke Doob’s decomposition to
be discussed later.

16.3 Lebesgue decomposition revisited.

As another application we observe that the Martingale Convergence Theorem yields the
Lebesgue decomposition for probability measures on filtered spaces:

Theorem 16.3 Given a measurable space (W,F ), a filtration tFnu with s(
î

n•0 Fn) = F

and two probability measures P and Q, let Pn and Qn be their respective restrictions to Fn and
assume that @n • 0 : Qn ! Pn. Denote Xn := dQn

dPn
. Then

Xn ›Ñ
nÑ8 X8 := lim inf

nÑ8 Xn (P + Q)-a.s. (16.29)

with X8 in L1(W,F , P). Moreover,

@A P F : Q(A) =
ª

A
X8 dP + Q

�
A X tX8 = 8u

�
(16.30)
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Proof. The setup ensures that, for each n • 0 and each A P Fn, we have
ª

A

Xn

1 + Xn
d(P + Q) =

ª

A

Xn

1 + Xn
d(Pn + Qn)

=
ª

A
XndPn = Qn(A) = Qn+1(A) =

ª

A
Xn+1dPn+1

=
ª

A

Xn+1

1 + Xn+1
d(Pn+1 + Qn+1) =

ª

A

Xn+1

1 + Xn+1
d(P + Q)

(16.31)

Since Xn is Fn-measurable and Zn := Xn
1+Xn

P [0, 1], we conclude that tZnu is a non-
negative bounded martingale with respect to tFnu on (W,F , 1

2 (P + Q)).
Theorem 15.1 shows Zn Ñ Z, P + Q-a.s. Since z fiÑ

z
1+z is continuous and increasing

on [0, 8] and thus invertible, this implies the convergence (16.29) with

Z =
X8

1 + X8
(P + Q)-a.s. (16.32)

where the right-hand side is interpreted as 1 when X8 = 8. Since
≥

XndP = 1, Fatou’s
lemma shows X8 P L1(W,F , P) and thus

P(X8 = 8) = 0 (16.33)

Passing to n Ñ 8 in (16.31) using the Bounded Convergence Theorem in turn gives

Q(A) =
ª

A

X8
1 + X8

d(P + Q) (16.34)

for all A P
î

n•0 Fn. This is an equality between two finite measures and so Dynkin’s
p/l-Theorem shows that equality holds for all A P F = s(

î
n•0 Fn).

We now use the same argument as in the proof of the Radon-Nikodym Theorem/Lebes-
gue decomposition (Theorem 10.5): Integrate both sides of (16.34) against

Y := (1 + X8)1AXtX8§ru (16.35)

and move the integrals with respect to Q to the left hand side. Then pass to r Ñ 8 with
the help of the Monotone Convergence Theorem to get

Q
�

A X tX8 † 8u
�
=

ª

A
X8 dP (16.36)

where we also used (16.33). This now gives the claim. ⇤
We note that this is again a differentiation result, but this time for measures: If tFnu

are generated by nested partitions of W that give access to all measurable sets, then the
ratios of Q and P on the elements of the partition — which is what the value of dQn

dPn
will correspond to, converge a.s. both under P and Q. The set where the limit is finite is
where Q is absolutely continuous with respect to P. The set where the limit is infinite is
the singular part. (The remaining set is null under both P and Q.)
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16.4 Kakutani product theorem.

We will now use these ideas further to give necessary and sufficient conditions for abso-
lutely continuous of infinite product measures:

Theorem 16.4 (Kakutani product theorem) Let X = tXkuk•0 and Y = tYkuk•0 be se-
quences of independent random variables for which there exist non-negative measurable func-
tions t fkuk•0 such that

@k • 0 @A P B(R) : P(Yk P A) = E
�

fk(Xk)1tXkPAu
�

(16.37)

(That is, the law of Yk is absolutely continuous with respect to the law of Xk and fk is the
Radon-Nikodym derivative.) Let µX, resp., µY denote the distribution of tXkuk•1, resp., tYkuk•1
on (RN,B(R)bN). Then

8π

k=0

E
�

f (Xk)
1/2�

° 0 ñ µY ! µX (16.38)

and
8π

k=0

E
�

f (Xk)
1/2� = 0 ñ µY K µX (16.39)

where infinite product exists because, by Jensen, E( f (Xk)1/2) §

a
E( f (Xk) = 1 for each k • 1.

In addition, we have

@k • 0 : fk ° 0 ñ

⇣
µY ! µX ô µX ! µY

⌘
(16.40)

so for positive fk’s the laws µX and µY are either equivalent or singular.

Proof. We will realize both random sequences as coordinate projections on W := RN

with F := B(R)bN. Writing Fn for the events depending only on the coordinates up
to n, the Radon-Nikodym derivative of µY|Fn with respect to µY|Fn is given by

Mn :=
nπ

k=0

fk(Xk) (16.41)

Theorem 16.3 then gives

Mn ›Ñ
nÑ8 M8 := lim inf

nÑ8 Mn (µX + µY)-a.s. (16.42)

with M8 P L1(µX) and

µY(A) =
ª

A
M8dµX + µY

�
A X tM8 = 8u

�
(16.43)

for all A P s(
î

n•0 Fn) = F .
We are now ready to show (16.39). Indeed, Fatou’s lemma along with the product

structure of µX gives
ª

M8dµx § lim inf
nÑ8

ª
M1/2

n dµX = lim
nÑ8

nπ

k=0

E
�

f (Xk)
1/2� (16.44)
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and so vanishing infinite product implies M8 = 0 µX-a.s. From (16.43) we get µY K µX.
The proof of (16.7) requires more work. We aim to show that Mn Ñ M8 in L1(µX).

For this we pick e ° 0 and use that the product converges and is over quantities in [0, 1]
to find n0 • 1 such that

@n ° ` • n0 :
nπ

k=`+1

E
�

f (Xk)
1/2�

• 1 ´ e (16.45)

With the expectations relative to µX, we now observe that

E|Mn ´ M`| = E
�
|

?

Mn ´

?

M`|(
?

Mn +
?

M`)
�

§

h
E
�
|

?

Mn ´

?

M`|
2�E
�
|

?

Mn +
?

M`|
2�
i1/2 (16.46)

which with the help of (|a| + |b|)2
§ 2a2 + 2b2 and the fact that E(Mk) = 1 gives

E|Mn ´ M`| § 2
h

E
�
|

?

Mn ´

?

M`|
2�
i1/2

(16.47)

Next we use the explicit form (16.41) to get

E
�
|

?

Mn ´

?

M`|
2� = E

 
M`

ˇ̌
ˇ̌

nπ

k=`+1

fk(Xk)
1/2

´ 1
ˇ̌
ˇ̌
2
!

= E
�
|W1/2

´ 1|
2� (16.48)

where

W :=
nπ

k=`+1

fk(Xk) (16.49)

and the second inequality follows from the independence of tXku. We now use that
E(W) = 1 to get

E
�
|W1/2

´ 1|
2� = E

�
W + 1 ´ 2W1/2� = 2

⇥
1 ´ E(W1/2)

⇤
(16.50)

Relying on W1/2 still having a product structure, the independence of tXku along with
(16.46–16.50) show

E|Mn ´ M`| § 2
?

2


1 ´

nπ

k=`+1

E
�

f (Xk)
1/2�

�1/2

(16.51)

For n, ` • n0, (16.45) shows that the right-hand side is less than 2
?

2
?

e, proving that
tMku is Cauchy in L1(µX). Hence Mn Ñ M8 in L1(µX). Using (16.43) with A := W we
then get µY(M8 = 8) = 0 and so µY ! µX.

If all t fku are strictly positive, then exchanging the roles of X and Y shows
8π

k=0

E
�

f (Yk)
´1/2�

° 0 ñ µY ! µX (16.52)

where we used that f ´1
k is the Radon-Nikodym derivative of the law of Xk with respect

to the law of Yk. But

E
�

f (Yk)
´1/2� = E

�
f (Xk)

´1/2 f (Xk)
�
= E

�
f (Yk)

1/2� (16.53)
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and so the premise of (16.52) is the same as that of (16.38). ⇤
To see how the above criteria work, let tXku be Bernoulli(1/2) and let tYku be inde-

pendent t0, 1u-valued with P(Yk = 1) = 1
2 + ek for some ek with |ek| † 1/2. Note that

for the Radon-Nikodym derivative we get

fk(a) =

#
1 + 2ek, if a = 1,
1 ´ 2ek, if a = 0,

(16.54)

and so
E
�

f (Xk)
1/2� = 1

2

⇣a
1 + 2ek +

a
1 ´ 2ek

⌘
= 1 ´ e2

k + o(e2
k) (16.55)

Theorem 16.4 then says that the laws of X and Y are mutually absolutely continuous if∞
k•1 e2

k † 8 and singular otherwise.

Further reading: Durrett, Sections 4.2 and 4.3.3
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17. UNIFORMLY INTEGRABLE MARTINGALES

Having shown that martingales converge to an integrable random variable a.s., we recall
that they obey EMn = EM0 and ask whether Mn Ñ M8 a.s. implies EM8 = EM0. This
can be guaranteed in reasonable generality thanks to a concept that we develop here.

17.1 Uniform integrability.

We wish to articulate a condition that guarantees EXn Ñ EX from Xn Ñ X a.s. Recall
that, for non-negative Xn, Fatou’s lemma gives lim infnÑ8 EXn • EX. If the inequality
is strict, “mass” somehow got lost to “infinity” from the measures µn(A) := E(1AXn) in
the limit. Thus, to prevent this from happening, we need to assume that these measures
are tight. This is basically the content of:

Definition 17.1 (Uniform integrability) A family tXa : a P Iu of real-valued random

variables is said to be uniformly integrable (UI) if

@e ° 0 DK P (0, 8) @a P I : E
�
|Xa|1t|Xa|•Ku

�
† e (17.1)

That this does indeed imply tightness is shown in:

Lemma 17.2 Let tXa : a P Iu be UI. Then

@e ° 0 Dd ° 0 @A P F : P(A) † d ñ @a P I : E(|Xa|1A) † e (17.2)

Proof. Note that

E(|Xa|1A) § E
�
|Xa|1t|Xa|•Ku

�
+ KP(A) (17.3)

so taking K so large that the first expectation is less than e/2, the right-hand side is less
than e once d † e/(2K). ⇤

Before we start addressing the initial question, let us give examples of UI families
and/or sufficient conditions for uniform integrability.

Lemma 17.3 If X P L1 then tXu is UI.

Proof. Dominated Convergence shows E(|X|1t|X|•Ku) Ñ 0 as K Ñ 8. ⇤

Lemma 17.4 For all n P N, if A0, . . . ,An Ñ L1 are UI, then so is
în

k=0 Ak. In words, finite
unions of UI families and, in particular, finite subsets of L1 are UI.

Proof. For each j = 0, . . . , n, let Kj be such that E(|X|1t|X|•Kju) † e for all X P Aj. The
constant K := maxtK0, . . . , Knu then does the same for all j = 0, . . . , n uniformly. ⇤

Next we note UI implies a uniform boundedness in L1 via the bound

}Xa}1 § K + E
�
|Xa|1t|Xa|•Ku

�
§ K + e (17.4)

However, simple counterexamples show that infinite sequences with bounded L1-norm
need not be UI. Containment in a ball in Lp for any p ° 1 nonetheless sufficient:
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Lemma 17.5 Suppose that tXa : a P Iu Ñ Lp for some p ° 1. Then

sup
aPI

}Xa}p † 8 ñ tXa : a P Iu is UI (17.5)

Proof. By Chebyshev’s inequality

E(|Xa|1t|Xa|•Ku) §
}Xa}p

Kp´1 §
1

Kp´1 sup
aPI

}Xa}p. (17.6)

Now choose K exceeds 1
p´1 -th power of e´1 supaPI }Xa}p. ⇤

Another sufficient condition is domination by an L1-random variable:

Lemma 17.6 For any random variables tXa : a P Iu and Y,

Y P L1
^
�
@a P I : |Xa| § Y

�
ñ tXa : a P Iu is UI (17.7)

Proof. Since x fiÑ x1tx•Ku is non-decreasing on (0, 8) we have

E(|Xa|1t|Xa|•Ku) § E(|Y|1t|Y|•Ku) (17.8)

for all a P I. Dominated Convergence implies that the right-hand side is less than e
once K is sufficiently large. ⇤

Here is one useful way to produce UI families of random variables:

Lemma 17.7 Let X P L1. Then tE(X|G) : G Ñ F s-algebrau is UI.

Proof. Fix e ° 0 and let d ° 0 be such that P(A) † d implies E(|X|1A) † e. (See
Lemmas 17.2–17.3.) Next choose K ° 0 so that E|X| † Kd. Given a sigma algebra
G Ñ F , abbreviate Y := E(X|G) and note

P(|Y| • K) §
1
K

E|Y| §
1
K

E|X| † d (17.9)

where we used that }Y}1 § }X}1 by Lemma 11.10. Then E(|X|1t|Y|•Ku) † e and so

E
�
|Y|1t|Y|•Ku

�
§ E

�
E(|X||G)1t|Y|•Ku

�
= E(|X|1t|Y|•Ku) † e (17.10)

where we used Lemma 11.10 to get the first inequality. ⇤
We now return to the original question and show that UI indeed does the job:

Theorem 17.8 For any sequence tXnun•1 of random variables and any random variable X,

Xn
L1

›Ñ X ô Xn
P

›Ñ X ^ tXn : n P Nu is UI (17.11)

Proof of “ñ”. Suppose Xn Ñ X in L1. Then

P(|Xn ´ X| ° e) §
1
e

}Xn ´ X}1 ›Ñ
nÑ8 0 (17.12)

and so Xn Ñ X in probability. To get that tXnu is UI, we note that the bound

|Xn| § |X| + |X ´ Xn| (17.13)
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implies

E(|Xn|1t|Xn|•Ku) § E|X ´ Xn| + E(|X|1t|Xn|•Ku)

§ E|X ´ Xn| + E(|X|1t|X|•K/2u) + E(|X|1t|Xn´X|•K/2u)
(17.14)

Now fix e ° 0 and let d ° 0 be such that P(A) † d implies E(|X|1A) † e/3. Then find
n0 • 0 so large that @n • n0 : }X ´ Xn}1 † e/3. Then use Lemma 17.3 to set

K := max
j=0,...,n0

inf
!

K1
• e/d : E(|Xj|1t|Xj|•K1u) † e

)
(17.15)

Markov’s inequality then shows P(|Xn ´ X| • K/2) §
2
3 e/K † d for n • n0 and so

E(|X|1t|Xn´X|•K/2u) † e/3. Putting these together we get that E(|Xn|1t|Xn|•Ku) † e for
all n • 0, showing that the sequence is UI. ⇤
Proof of “”. assume that Xn Ñ X in probability with tXnu UI. Then (??) shows
supn•0 }Xn}1 and Fatou’s lemma gives X P L1. will first prove that X P L1. For that
we note that, by choosing a subsequence tnku, we can ensure Xnk Ñ X a.s. Fatou’s
Lemma gives us

E(|X|1t|X|•Ku) § lim inf
kÑ8

E(|Xnk |1t|Xnk |•Ku) (17.16)

and so E(|X|1t|X|•Ku) † e for K sufficiently large. A straightforward estimate now shows
that, since tXnu is UI and X P L1, then also tXn ´ Xu is UI. Hence, for any 0 † e † K † 8

we have

E|Xn ´ X| § e + KP(e † |Xn ´ X| § K) + E(|Xn ´ X|1t|Xn´X|•Ku) (17.17)

The third term on the right can be made less than e by choosing K sufficiently large.
Since Xn Ñ X in probability, the second term actually tends to zero as n Ñ 8. The
L1-convergence follows. ⇤

17.2 Lévy Forward Theorem.

Our next item of business is to apply the concept of uniform integrability to martingales.
Here is a consequence of Theorem 17.8:

Corollary 17.9 For sub/supermartingales tXnu, the following are equivalent:
(1) tXnu is UI
(2) Xn converges a.s. and in L1

(3) Xn converges in L1

Proof. We have (2) ñ (3) trivially and (3) ñ (1) by Theorem 17.8. To show (1) ñ (2),
note tXnu UI implies supn•1 EXn̆ † 8. So Xn Ñ X8 a.s. by the Martingale Convergence
Theorem. Uniform integrability then yields L1 convergence as well. ⇤

Next we observe that once a martingale converges in L1, it can be represented by
conditioning from the limiting random variable.
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Lemma 17.10 Let tMn,Fnu be a martingale.

Mn ›Ñ
nÑ8 M8 in L1

ô @n • 0 : Mn = E(M8|F8) a.s. (17.18)

Both of these are equivalent to tMnu being UI.

Proof. By L1-convergence, E(Mk1A) Ñ E(M81A) as k Ñ 8 for each A P F . On the
other hand, for A P Fn we have E(Mk1A) = E(Mn1A) for each k • n. Hence

A P Fn ñ E(Mn1A) = E(M81A). (17.19)

Since Mn is Fn-measurable, it serves as a version of E(M8|Fn). That (17.18) is also
equivalent to tMnu being UI follows from Corollary 17.9. ⇤

We now take a different perspective and prove:

Theorem 17.11 (Lévy Forward Theorem) Let X P L1 and let tFnu be a filtration. Denote

F8 := s

✓§

n•1

Fn

◆
. (17.20)

Then
E(X|Fn) ›Ñ

nÑ8 E(X|F8) a.s. and in L1 (17.21)

holds for any choice of versions of the conditional expectations.

Proof. Splitting X into the positive and negative parts, we may assume X • 0. Given a
choice of versions of the conditional expectations denote Xn := E(X|Fn) and set

X8 := lim sup
nÑ8

Xn. (17.22)

Since tXn,Fnu is a UI martingale, we have Xn Ñ X8 a.s. and in L1. We thus only have
to show that X8 is a version of E(X|F8).

First X8 is F8-measurable because Xn is Fn-measurable and thus F8-measurable.
To prove the other defining property of conditional expectation, define measures

n1(A) := E
�
E(X|F8)1A

�
and n2(A) := E(X81A) (17.23)

on F . We claim that n1 = n2 on
î

n•1 Fn. Indeed, A P Fn implies E(Xk1A) = E(Xn1A)
once k • n and thus, by L1 convergence Xn Ñ X8, also n2(A) := E(X81A) = E(Xn1A).
On the other hand, E(E(X|F8)1A) = E(Xn1A) by the “smaller-always-wins” principle
and thus n2(A) = n1(A).

The class tA P F : n1(A) = n2(A)u is a l-system that contains the p-system
î

n•1 Fn.
Thus it contains F8 as well. It follows that X8 = E(X|F8) a.s. ⇤

The Lévy Forward Theorem implies a zero-one law:

Corollary 17.12 (Lévy’s Zero-One Law) For any filtration tFnu and F8 given by (17.20),

@A P F8 : E(1A|Fn) ›Ñ
nÑ8 1A a.s. (17.24)

Along similar lines we get a very elegant proof of:
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Theorem 17.13 (Kolmogorov’s Zero-One Law) Let tYkuk•0 be independent and denote

Tn := s(Yn+1, Yn+2, . . . ) and T :=
£

n•1

Tn (17.25)

Then P is trivial on T , i.e.,
@A P T : P(A) P t0, 1u. (17.26)

Proof. Denote Fn := s(Y1, . . . , Yn). Then F8 := s(Y1, Y2, . . . ). Since every A P T is
independent of every B P Fn, we have E(1A|Fn) = P(A) a.s. But Corollary 17.12 and
T Ñ F8 gives P(A) = E(1A|Fn) Ñ 1A a.s. and so P(A) P t0, 1u for all A P T . ⇤

17.3 Lévy Backward Theorem.

Applications naturally lead us to consider the behavior of E(X|Fn) for decreasing se-
quences of s-algebras as well. These are typical examples of backward martingles which
are just martingales parametrized backwards in time. Here we get:

Theorem 17.14 (Lévy Backward Theorem) Let X P L1
P (W,F , P) and let tFnu be sub-s-

algebras of F such that @n • 0 : Fn+1 Ñ Fn. Abbreviate

F8 :=
£

n•1

Fn (17.27)

Then
E(X|Fn) ›Ñ

nÑ8 E(X|F8), a.s. & in L1 (17.28)

holds for any choice of versions of the conditional expectations.

Proof. Abbreviate Xn := E(X|Fn). We need to temporarily reverse time to establish
convergence. Fix an integer N • 1 and denote

Gn := F(N´n)_0 (17.29)

and set
Yn := E(X|Gn) (17.30)

Since tGnu is a filtration, tYn,Gnu is a martingale. In particular, if Un[a, b] denotes the
number of completed upcrossings of [a, b] by tY1, . . . , Ynu, then Doob’s Upcrossing In-
equality implies

EUn[a, b] §
EYN + |a|

b ´ a
§

E|X| + |a|

b ´ a
(17.31)

Next and let rUn[a, b] denote the number of up-crossing of [´b, ´a] by t´X0, . . . , ´Xnu.
Then

rUn[a, b] § Un[a, b] + 1 (17.32)

and so supn•1 E rUn[a, b] † 8. In particular,

rU8[a, b] := lim
nÑ8

rUn[a, b] † 8 a.s. (17.33)
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and so tXku crosses [a, b] only finite number of times a.s. It follows that

Xn ›Ñ
nÑ8 X8 := lim sup

nÑ8
Xn, a.s. (17.34)

The convergence also occurs in L1 since tXnu is UI.
Our remaining task is to show that X8 is a version of E(X|F8). First note that, thanks

to the definition using limes superior and the fact that n fiÑ Fn is decreasing, X8 is Fn-
measurable for each n • 1. Hence it is also F8-measurable. Next pick A P F8. Then
A P Fn for each n • 0 and so we have

E(X1A) = E
�
E(X|Fn)1A

�
›Ñ
nÑ8 E(X81A) (17.35)

by L1-convergence Xn Ñ X8. Hence X8 = E(X|F8). ⇤
As a bonus, we will give an elegant proof of the SLLN:

Proof of the Strong Law of Large Numbers. Suppose tXnu are i.i.d. with X1 P L1. Set
Sn := X1 + ¨ ¨ ¨ + Xn and let Fn := s(Sn, Sn+1, . . . ). We claim that

@k = 1, . . . , n : E(Xk|Fn) = E(X1|Fn) (17.36)

For this pick m • 0 and B0, . . . , Bm P B(R) and set A :=
ìm

j=0tSn+j P Bju. Denoting the
distribution of (X1, . . . , Xn+m) as µ, we have

E(Xk1A) =
ª

Rn+m
xk

mπ

i=0

1tx1+¨¨¨+xn+jPBjuµ(dx1, . . . , dxn+m)

=
ª

Rn+m
x1

mπ

i=0

1tx1+¨¨¨+xn+jPBjuµ(dx1, . . . , dxn+m) = E(X11A)

(17.37)

by the fact that µ (being a product measure) is invariant under relabeling of the first
and k coordinates. Noting that the above product events form a p-system generating Fn
while tA P F : E(X11A) = E(Xk1A)u is a l-system, Dynkin’s p/l theorem gives that
E(X11A) = E(Xk1A) holds for all A P Fn. Hence we get (17.36) by uniqueness of the
conditional expectation.

Summing (17.36) over k = 1, . . . , n yields

E(X1|Fn) =
Sn

n
(17.38)

and Lévy Backward Theorem (and the fact that Fn is non-increasing) gives
Sn

n
›Ñ
nÑ8 E(X1|F8) (17.39)

But Y := lim supnÑ8
Sn
n is tail measurable and thus a.s. constant, by Kolmogorov’s Zero-

One Law. Hence E(X1|F8) is equal to its expectation, E(X1|F8) = E(X1) a.s. It follows
that Sn

n Ñ EX1 a.s. and in L1. ⇤
The Lévy Backward Theorem is a great tool whenever we need to condition a family

of random variables on the s-algebra “at infinity.” This is useful in the theory of Gibbs
measures. We will see another application of this in the next lecture when we discuss
exchangeability.
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We finish with a remark on a simple corollary of both Lévy’s theorems. Observe that
one easily adjusts the proofs of Theorem 17.11, resp., Theorem 17.14 to show that for any
sequence tXnu (not necessarily adapted)

Xn ›Ñ
nÑ8 X in L1

ñ E(Xn|Fn) ›Ñ
nÑ8 E(X|F8) in L1 (17.40)

However, as is easily checked by constructing a counterexample, this does not gener-
ally extend to a.s. convergence even if Xn Ñ X a.s. and in L1. The following sufficient
condition is useful and easy to prove:

Corollary 17.15 (Dominated convergence for conditional expectations) Let tFnu be ei-
ther increasing or decreasing sequence of s-algebras and let F8 be either as in (17.20) or in (17.27)
accordingly. Then for any sequence tXnun•0 of random variables,

Xn ›Ñ
nÑ8 X a.s. ^ sup

n•0
|Xn| P L1 (17.41)

imply
E(Xn|Fn) ›Ñ

nÑ8 E(X|F8) a.s. and in L1 (17.42)

Proof. Denote Zn := supk•n |Xk ´ X| and Y := supn•0 |Xn|. From Xn Ñ X a.s. we get
Zn § 2Y a.s. and the assumptions give Zn P L1. For each n • 0, Theorem 17.11, resp.,
Theorem 17.14 gives

sup
k•m

E
�
|Xk ´ X|

ˇ̌
Fn)

n§m
§ E(Zn|Fm) ›Ñ

mÑ8 E(Zn|F8) a.s. (17.43)

But Xn Ñ X a.s. implies Zn Ó 0 a.s. and, by Zn § 2Y, also Zn Ñ 0 in L1. Taking n Ñ 8

on the right thus shows

lim sup
nÑ8

ˇ̌
ˇE(Xn|Fn) ´ E(X|Fn)

ˇ̌
ˇ § lim sup

nÑ8
E
�
|Xn ´ X|

ˇ̌
Fn) = 0 a.s. (17.44)

Since E(Xn|Fn) Ñ E(X|Fn) a.s. by above theorems, we get the claim. ⇤

Further reading: Durrett, Sections 4.6-4.7
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18. EXCHANGEABILITY

Our next task is to explore further the property (17.36) that underpinned the backward-
martingale based proof of the SLLN. This leads to the concept of exchangeability that
has many interesting applications. A key discovery in this angle of research was done
by B. de Finetti whose name is now placed (rather generously) on many analogous state-
ments throughout probability.

18.1 Analyzing Pólya’s urn.

Let us return to Polya’s urn. We will focus on the situation where, initially, there are r
red and g green balls and at each time only one additional ball is added to the urn; i.e.,
b = 1. A run of the urn is described by random variables Z1, Z2, . . . , where

Zk := 1tk-th sampled ball is redu (18.1)

Then Rn = r + Z1 + ¨ ¨ ¨ + Zk. Let us compute the probability of a given run Z1, . . . , Zn.
First we examine the special case

P
�
Z1 = 1, . . . , Zk =1, Zk+1 = 0, . . . , Zn = 0

�

=
r

r + g
. . .

r + k ´ 1
r + g + k ´ 1

g
r + g + k

. . .
g + n ´ k ´ 1
r + g + n ´ 1

=
r(r + 1) . . . (r + k ´ 1) ¨ g(g + 1) . . . (g + n ´ k + 1)

(r + g)(r + g + 1) . . . (r + g + n ´ 1)

(18.2)

However, looking at the structure of the expression we easily convince ourselves that
the same expression will be arrived at for any sequence of k ones and n ´ k zeros. For all
a1, . . . , an P t0, 1u with

∞n
i=1 ai = k we will thus have

P
�
(Z1, . . . , Zn) = (a1, . . . , an)

�
= P

⇣
(Z1, . . . , Zn) = ( 1, . . . , 1loomoon

k-times

, 0, . . . , 0loomoon
n ´ k-times

)
⌘

(18.3)

It follows that (Z1, Z2, . . . ) obeys the conditions in the following definition:

Definition 18.1 A finite permutation p is a bijection p : N Ñ N such that

 
i P N : p(i) ‰ i

(
is finite (18.4)

We say that the random variables (X1, X2, . . . ) are exchangeable if

(Xp(1), Xp(2), . . . ) law
= (X1, X2, . . . ) (18.5)

holds for any finite permutation p.

A particular consequence of the zero-one nature of the variables is that the compu-
tation of probability of a given run of zero’s and one’s conditioned on the total sum
reduces to purely combinatorial argument:

P

 
(Z1, . . . , Zn) = (a1, . . . , an)

ˇ̌
ˇ̌
ˇ

nÿ

i=1

Zi = k

!
=

✓
n
k

◆´1
if

nÿ

i=1

ai = k (18.6)
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Reduction to the joint law of a finite number of Zi’s is easily obtained as well: If 1 § i1 †

i2 † ¨ ¨ ¨ † im § n and a1, . . . , am P t0, 1u are such that a := a1 + ¨ ¨ ¨ + am § k, then

P

 
Zi1 = a1, . . . , Zim = am

ˇ̌
ˇ̌
ˇ

nÿ

i=1

Zi = k

!
=

✓
n ´ m
k ´ a

◆

✓
n
k

◆ (18.7)

Now let us consider the limit n Ñ 8. Abbreviating Sn := Z1 + ¨ ¨ ¨ + Zn and setting
Fn := s(Sn, Sn+1, . . . ), the argument in (17.37) with the required “swap” symmetry of
the underlying distribution provided by exchangeability shows that

Sn

n
= E(Z1|Fn) a.s. (18.8)

The Backward Lévy Theorem then gives
Sn

n
›Ñ
nÑ8 U := E(Z1|F8) a.s. (18.9)

A calculation now shows that
✓

n ´ m
k ´ a

◆

✓
n
k

◆ =

✓ a´1π

j=0

(k ´ j)
◆✓ m´a´1π

j=0

(n ´ k ´ j)
◆

m´1π

j=0

(n ´ j)

«
ka(n ´ k)m´a

nm (18.10)

With just tiny bit of work we find out that, from Sn
n Ñ U a.s. we get

P
�
Zi1 = a1, . . . , Zim = am

ˇ̌
Fn
�
=

✓
n ´ m
Sn ´ a

◆

✓
n
Sn

◆ ›Ñ
nÑ8 Ua(1 ´ U)m´a (18.11)

for all m • 1 and all a = 0, . . . , m. But the Backward Martingale Theorem implies that
the limit of the left-hand side is the conditional probability given F8 :=

ì
n•1 Fn and so

P
�
Zi1 = a1, . . . , Zim = am

ˇ̌
F8
�
= Ua(1 ´ U)m´a =

mπ

i=1

Uai(1 ´ U)1´ai (18.12)

In short, conditional on F8, or even just s(U), the random variable (Z1, Z2, . . . ) are
Bernoulli(U). As only exchangeability was used throughout, we have proved:

Theorem 18.2 (de Finetti 1931) Suppose Z1, Z2, . . . are exchangeable with values in t0, 1u.
Then there exist a random variable U taking values in [0, 1] such that, conditional on U, the
random variables tZiu are Bernoulli(U). In particular, if µ denotes the distribution of U, then

P
�
Z1 = a1, . . . , Zk = ak

�
=

ª

[0,1]
µ(du)

kπ

i=1

uai(1 ´ u)1´ai (18.13)

holds for any k • 1 and any a1, . . . , ak P t0, 1u.
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In order to describe the full law, one has to find the distribution µ in (18.13). This of
course depends on the particulars of the problem at hand. For the Pólya urn we get:

Lemma 18.3 Consider the Pólya urn with parameters r, g • 1 and b = 1. Then U has
distribution

µ(du) = 1[0,1](u)
1

B(r, g)
ur´1(1 ´ u)g´1du (18.14)

where B(r, g) := (r+g´1)!
(r´1)!(g´1)! . In particular, U is uniform on [0, 1] for r = 1 = g.

Proof. Using (18.1–18.2) we get

P

 
nÿ

j=1

Zj = k

!
=

1
B(r, g)

(r + k ´ 1)!(g + n ´ k ´ 1)!
(r + g + n ´ 1)!

✓
n
k

◆
(18.15)

The right-hand side is written further as

1
B(r, g)

✓ r´1π

j=1

(k + j)
◆✓ g´1π

j=1

(n ´ k + j)
◆

r+g´1π

j=1

(n + j)

(18.16)

The numerator and denominator can be estimated with the help of

@k, ` P N : (k + 1)` §

π̀

j=1

(k + j) § (k + 1 + `)` § (k + 1)`e
`2

k+1 (18.17)

where we used that 1+ s § es for all real s. Noting that there are r ´ 1+ g ´ 1 = r + g ´ 2
terms in the numerator while r + g ´ 1 in the denominator, dividing both numerator and
denominator by (n + 1)r+g´1 shows that

P

 
nÿ

j=1

Zj = k

!
=

1
n + 1

1
B(r, g)

 ✓
k + 1
n + 1

◆r´1✓
1 ´

k + 1
n + 1

◆g´1
!

qn,k (18.18)

where
e´ (r+g)2

n+1 § qn,k § e
r2

k+1+
g2

n´k+1 (18.19)
Summing the result for all k with k § na and using that u fiÑ ur´1(1 ´ u)g´1 is continuous
to approximate the resulting sum by the Riemann integral gives

P

 
nÿ

j=1

Zj § na

!
›Ñ
nÑ8

1
B(r, g)

ª a^1

0
ur´1(1 ´ u)g´1du (18.20)

This shows that 1
n
∞n

j=1 Zj
w

›Ñ U with distribution in (18.14). ⇤
The case r = 1 = g is much simpler to deal with because (18.16) equals 1

n+1 and so∞n
j=1 Zj is actually uniform on t0, 1, . . . , nu for each n • 1.
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18.2 General de Finetti theorem of Hewitt and Savage.

Having resolved the special case of zero-one valued random variables, we can move
to general exchangeable families. Such families (not even necessarily indexed by natu-
rals) appear in many parts of science for the simple fact that, by the laws of nature or
as a feature of the problem, the random variables of interest do not come with a canon-
ical labeling. Any family of random variables whose labeling is arbitrary (read: can be
changed without affecting the result) is necessarily exchangeable.

A formal treatment of the general case will require some notation. Let X = tXkuk•0 be
a sequence of random variables on a probability space (W,F , P) taking values in (S, S).
For each n P N, let

Pn :=
 

p : finite permutation ^ @i ° n : p(i) = i
(

(18.21)

For any finite permutation p, denote by Xp the sequence tXp(k)uk•0. Recall that, by the
Doob-Dynkin lemma, every A P s(X1, X2, . . . ) can be represented as A = X´1(B) =
tX P Bu for some B P SbN. The phrase “tXkuk•0 is exchangeable” then means

@B P SbN
@p P

§

n•1

Pn : P(X P B) = P(Xp P B) (18.22)

Define
En :=

!
X´1(B) : B P SbN

^ @p P Pn : X´1
p (B) = X´1(B)

)
(18.23)

It is readily checked that En is a s-algebra and that Pn Ñ Pn+1 implies En+1 Ñ En for
all n • 0. The intersection

E :=
£

n•1

En. (18.24)

is also a s-algebra which we refer to as the s-algebra of exchangeable events associated
with tXkuk•0. A key technical tool we already used a few times above is:

Lemma 18.4 Let tXkuk•1 be an S-valued exchangeable sequence and let f : S Ñ R be a Borel
measurable function such that f (X1) P L1. Then

1
n

nÿ

k=1

f (Xk) ›Ñ
nÑ8 E

�
f (X1)

ˇ̌
E
�

a.s. and inL1 (18.25)

where E is the s-algebra exchangeable events associated with tXkuk•1.

Proof. Let A P En. Then A = X´1(B) such that X´1
p (B) = X´1(B) for all p P Pn.

Given C P S, (18.22) then shows

E
�
1tX1PCu1A

�
= E

�
1tX1PCu1X´1(B)

�
= E

�
1tXp(1)PCu1X´1

p (B)
�
= E

�
1tXp(1)PCu1A

�
(18.26)

Using additivity and Dominated Convergence, this gives E( f (X1)1A) = E( f (Xp(1)1A)
for all p P Pn implying

@k = 1, . . . , n : E
�

f (Xk)
ˇ̌
En
�
= E

�
f (X1)

ˇ̌
En
�

(18.27)

Using that Sn :=
∞n

k=1 f (Xk) is En-measurable, we get Sn
n = E( f (X1)|En) a.s. The claim

then follows from the Backward Lévy Theorem. ⇤
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For this setting, we now state:

Theorem 18.5 (de Finetti theorem, expectation version) Let tXnun•0 be exchangeable and
taking values in measurable space (S, S). Then for all k • 0 and all B0, . . . , Bk P S,

E
✓ kπ

i=0

1tXiPBiu

ˇ̌
ˇ̌ E
◆
=

kπ

i=0

E(1tX1PBiu|E) a.s. (18.28)

Proof. Pick B1, . . . , Bk P S and abbreviate Aj,i := tXi P Bju. Our aim is to show that

P
�

A1,1 X ¨ ¨ ¨ X Ak,k
ˇ̌
E
�
=

kπ

j=1

P(Aj,1|E) a.s. (18.29)

where we ease the notation by writing conditional probability for expectation of an in-
dicator. For this we pick n • k and write

E

 
kπ

j=1

✓
1
n

nÿ

i=1

1Aj,i

◆ ˇ̌
ˇ̌
ˇ En

!
=

1
nk

ÿ

1§i1,...,ik§n
P
�

A1,i1 X ¨ ¨ ¨ X Ak,ik

ˇ̌
En
�

= O
⇣ k2

n

⌘
+

1
nk

ÿ

1§i1,...,ik§n
distinct

P
�

A1,i1 X ¨ ¨ ¨ X Ak,ik

ˇ̌
En
�

a.s.
(18.30)

where we noted that the number of terms when at least one pair of indices coincide is
at most nk´1(k

2) which is in turn at most k2

n times nk. The key point now is that, for any
distinct i1, . . . , ik § n,

P
�

A1,i1 X ¨ ¨ ¨ X Ak,ik

ˇ̌
En
�
= P

�
A1,1 X ¨ ¨ ¨ X Ak,k

ˇ̌
En
�

a.s. (18.31)

which is proved by integrating against any event from En and invoking exchangeability
of tXku. It thus follows

E

 
kπ

j=1

✓
1
n

nÿ

i=1

1Aj,i

◆ ˇ̌
ˇ̌
ˇ En

!
= O

⇣ k2

n

⌘
+

1
nk

n!
(n ´ k)!

P
�

A1,1 X ¨ ¨ ¨ X Ak,k
ˇ̌
En
�

(18.32)

But
∞n

i=1 1Aj,i is measurable with respect to En and so

E

 
kπ

j=1

✓
1
n

nÿ

i=1

1Aj,i

◆ ˇ̌
ˇ̌
ˇ En

!
=

kπ

j=1

✓
1
n

nÿ

i=1

1Aj,i

◆

=
kπ

j=1

E
✓

1
n

nÿ

i=1

1Aj,i

ˇ̌
ˇ̌ En

◆
=

kπ

j=1

P
�

Aj,1
ˇ̌
En
�

a.s.

(18.33)

where in the last step we used that P(Aj,i|En) = P(Aj,1|En) a.s. for all i § n by exchange-
ability. Summarizing, we have

kπ

j=1

P
�

Aj,1
ˇ̌
En
�
= O

⇣ k2

n

⌘
+

1
nk

n!
(n ´ k)!

P
�

A1,1 X ¨ ¨ ¨ X Ak,k
ˇ̌
En
�

a.s. (18.34)
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Taking n Ñ 8 with the help of the Backward Lévy Theorem, we get (18.29). ⇤
Notice that the above proof makes (X1, . . . , Xk) conditioned on En behave as i.i.d. as

long as k = o(
?

n) as n Ñ 8. This is also the best we can hope for in general because the
sequence (X1, . . . , Xn) could come from conditioning an i.i.d. sequence on its total sum
which suppresses fluctuations of that sum that would normally be at least order

?
n. As

can be checked, the absence of these fluctuations will start to be visible once order
?

n of
random variables are revealed.

An interesting question is what happens when the random variables tXkuk•1 are al-
ready i.i.d. For this case we get:

Theorem 18.6 (Hewitt-Savage Zero-One Law) If tXkuk•1 are i.i.d. then

@A P E : P(A) P t0, 1u (18.35)

Proof. There is a proof that parallels the classical proof of Kolmogorov’s Zero-One Law
but we rather plug into the argument from the proof of Theorem 18.5. Indeed, thanks to
(18.33) and the Strong Law of Large Numbers

E

 
kπ

j=1

✓
1
n

nÿ

i=1

1Aj,i

◆ ˇ̌
ˇ̌
ˇ En

!
=

kπ

j=1

✓
1
n

nÿ

i=1

1Aj,i

◆
›Ñ
nÑ8

kπ

j=1

P(Aj,1) a.s. (18.36)

where A P En. Using this in (18.32) gives

P
✓ k£

j=1

Aj,i

ˇ̌
ˇ̌ E
◆
=

kπ

j=1

P(Aj,1) a.s. (18.37)

Since events of the form
ìk

j=1 Aj,i generate Fk := s(X1, . . . , Xk), it follows that E and Fk
are independent each k • 1. For each A P E , the Lévy Zero-One Law then shows
1A = limkÑ8 E(1A|Fk) = P(A) a.s. implying P(A) P t0, 1u. ⇤

A standard application of the Hewitt-Savage Zero-One Law is:

Lemma 18.7 Let tXkuk•0 be i.i.d. real-valued and set Sn := X1 + ¨ ¨ ¨ + Xn. Assume that
P(X1 ‰ 0) ° 0. Then exactly one of the following alternatives hold:

(1) Sn Ñ 8 a.s.
(2) Sn Ñ ´8 a.s.
(3) lim inf

nÑ8 Sn = ´8 ^ lim sup
nÑ8

Sn = +8 a.s.

Proof. All three alternatives are E -measurable and so, by Theorem 18.6, each occurs
with probability one or zero. We claim that P(lim infnÑ8 Sn P R) = 0. Indeed, if not
then this probability is one and lim infnÑ8 Sn is constant a.s. Denoting that constant
by a, we then also have that lim infnÑ8(Sn ´ X1) = a a.s. But this is impossible because
then a = X1 + a a.s. which contradicts that P(X1 ‰ 0) ° 0. Similarly we prove that
P(lim supnÑ8 Sn P R) = 0 thus giving us (3) unless either (1) or (2) occur. ⇤

Another, albeit much simpler, application for sums of i.i.d. random variables is that

@a P R : P(Sn = a i.o.) P t0, 1u (18.38)
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again by the fact that tSn = a i.o.u is an exchangeable event.

18.3 Extremal decomposition.

While Theorem 18.5 along with its proof contain the main ideas entering Theorem 18.2,
its formulation lacks the clarity and beauty of (18.13). This has been addressed by E. He-
witt and L.J. Savage in 1955 who provided a version of (18.13) for exchangeable random
variables taking values in a compact Hausdorff space. We will do the same for random
variables taking values in a standard Borel space.

Recall that, given a measurable space (X , S), we use M1(X ) to denote the set of
probability measures on (X , S). We endow M1(X ) with the minimal s-algebra

S := s
⇣ 

n P M1(X ) : n(B) P A
(

: B P S, A P B(R)
⌘

(18.39)

that makes n fiÑ n(B) measurable for all B P S. Note that the Kolmogorov Extension
Theorem asserts that the product measure nbN exists for each n P M1(S). As is then
easily checked using the p/l-theorem, the map n fiÑ nbN(B) is then measurable (as a
map from (M1(S),S) Ñ (R,B(R))) for all B P SbN.

Theorem 18.8 (Hewitt and Savage 1955) Let tXnun•0 be exchangeable random variables
taking values in a standard Borel space (S, S). Then there exists a unique probability measure Q
on (M1(S),S) such that

@B P SbN : P
�
(X0, X1, . . . ) P B

�
=

ª
µbN(B) Q(dµ) (18.40)

Proof. The fact that (S, S) is standard Borel ensures that there exists a conditional dis-
tribution of X0 given E . Explicitly, there exists a map µX0 : W ˆ S Ñ [0, 1] which is an
E -measurable function in the first component, a probability measure in the second com-
ponent and obeys

@B P S : µX0(¨, B) = E
�
1tX0PBu

ˇ̌
E
�

a.s. (18.41)

In particular, w fiÑ µX0(w, ¨) is an M1(S)-valued random variable in the above sense.
Let Q be the distribution of this map on (M1(S),S). Taking expectation in (18.28) and
invoking the change of variables formula then shows

P
✓ k£

j=0

tXj P Bju

◆
=

ª kπ

j=0

µX0(w, Bj) P(dw)

=
ª kπ

j=0

µ(Bj) Q(dµ)

=
ª

µbN
�

B0 ˆ ¨ ¨ ¨ ˆ Bn ˆ S ˆ . . .
�
Q(dµ)

(18.42)

As this is equality between two measures, the standard argument based on Dynkin’s
p/l-theorem extends this to (18.40).
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In order to prove uniqueness, suppose that Q is a probability measure on (M1(S),S)
and let tXnun•0 be random variables such that (18.40) holds. (We think of these as re-
alized by coordinate projections on SN, so this is a statement about their distribution
on (SN, SbN).) Since product measures are exchangeable, so is tXnun•0. Given any
A P S, denote

Zn(A) :=
1
n

n´1ÿ

k=0

1tXkPAu (18.43)

Writing EµbN for expectation with respect to µbN, for any A1, . . . , Ak P S and any
bounded measurable f : Rk

Ñ R, (18.40) gives

E
⇣

f
�
Zn(A1), . . . , Zn(Ak)

�⌘
=

ª
EµbN

⇣
f
�
Zn(A1), . . . , Zn(Ak)

�⌘
Q(dµ) (18.44)

by a simple application of Tonelli’s theorem. Our aim now is to take n Ñ 8 and produce
an identity that identifies Q uniquely.

Since tXnun•0 are exchangeable under P, Lemma 18.4 shows

Zn(A) ›Ñ
nÑ8 Z(A) := E(1tX1PAu|E) P-a.s. (18.45)

For f : Rk
Ñ R bounded and continuous the Bounded Convergence Theorem then gives

E
⇣

f
�
Zn(A1), . . . , Zn(Ak)

�⌘
›Ñ
nÑ8 E

⇣
f
�
Z(A1), . . . , Z(Ak)

�⌘
(18.46)

On the other hand, given any µ P M1(S), the Strong Law of Large Numbers is in force
under the product measure µbN and so we get

Zn(A) ›Ñ
nÑ8 µ(A) µbN-a.s. (18.47)

For f as above the Bounded Convergence Theorem turns this into

EµbN

⇣
f
�
Zn(A1), . . . , Zn(Ak)

�⌘
›Ñ
nÑ8 f

�
µ(A1), . . . , µ(Ak)

�
(18.48)

Invoking (18.46) and (18.48) along with the Bounded Convergence Theorem for the in-
tegral with respect to Q in (18.44) then shows that

E
⇣

f
�
Z(A1), . . . , Z(Ak)

�⌘
=

ª
f
�
µ(A1), . . . , µ(Ak)

�
Q(dµ) (18.49)

holds for all bounded continuous f : Rk
Ñ R. Taking limits of f to approximate indi-

cators of open sets in Rk (which form a p-system) and invoking Dynkin’s p/l-theorem
then shows that (µ(A1), . . . , µ(Ak)) under Q is equidistributed to (Z(A1), . . . , Z(Ak))
under P, for any choice of k • 1 and any A1, . . . , Ak P S. By Dynkin’s p/l-theorem
again, this determines Q on (M1(S),S) uniquely. ⇤

Corollary 18.9 Let (S, S) be a standard Borel space. Then the set of exchangeable probability
measures on (SN, SbN) is convex with extremal points being exactly the product measures. The
formula (18.40) gives an extremal decomposition of an exchangeable law.
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Proof. The invariance of exchangeability under convex combinations is immediate, so
all we have to prove is extremality of the product laws. Let µ P M1(S) and there are
two exchangeable laws r1, r2 on (SN, SbN) and a P (0, 1) such that

µbN = ar1 + (1 ´ a)r2 (18.50)

The representation (18.40) shows that ri =
≥

nbNQi(dn), i = 1, 2, for some probability
measures Q1 and Q2 on (M1(S),S). Hence,

µbN(¨) =
ª

nbN(¨)Q(dn) (18.51)

for Q := aQ1 + (1 ´ a)Q2. But the left hand side also equals
≥

nbNdµ(dn) and so, by the
established uniqueness, Q = dµ. As a P (0, 1) implies Q1, Q2 ! Q, both Q1 and Q2 are
concentrated on tµu. Since they are also probability measures, we have Q1 = dµ = Q2
proving that µbN is extremal. ⇤

In their paper, E. Hewitt and L.J. Savage call a probability law on a SN presentable if
it takes the form (18.40); their theorem then says that every exchangeable law on (prod-
uct) standard Borel space is presentable. They asked whether the same is true without a
topological assumption on S. This was settled negatively in a 1979-paper of L.E. Dubins
and D.A. Freedman (Zeit. War. v. Geb, vol. 48, pages 115–132) where they give an ex-
ample of a probability measure on (IN,B(I)bN), with I := [0, 1], which is exchangeable
but not presentable.

Extremal decompositions of the kind (18.40) appear and are useful in other parts of
probability. We will encounter one example in ergodic theory; another setting where this
shows up is the theory of Gibbs measures.
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19. Lp-MARTINGALES AND SOME INEQUALITIES

We will wrap up the subject of martingales by noting some technical facts about mar-
tingales that are quite useful in applications. Specifically, we will study convergence of
martingales in Lp using maximal inequalities, prove Doob’s decomposition and study
square-integrable martingales with the help of their bracket process. Finally, we prove a
very useful concentration inequality.

19.1 Lp-martingales.

We start by a simple consequence of the inequality we proved in Lemma 16.2 in prepa-
ration for an maximum-inequality based proof of martingale convergence:

Corollary 19.1 (Doob’s maximal inequality) Let tXnun•0 be a non-negative submartingale
with supn•0 }Xn}1 † 8. Set

X‹ := sup
n•0

Xn (19.1)

Then

@l ° 0 : P(X‹ ° l) §
1
l

sup
n•0

}Xn}1 (19.2)

In particular, X‹ † 8 a.s.

Proof. Doob’s maximal inequality from Lemma 16.2 gives

lP
⇣

max
0§j§n

Xj ° l
⌘

§ E
⇣

Xn1tmax0§j§n Xj°lu
⌘

(19.3)

Bounding the expectation by }Xn}1, the left hand side is dominated by supn•0 }Xn}1
uniformly in n. The claim follows by taking n Ñ 8. ⇤

The statement (19.2) can be thought of as a version of the “weak-L1-inequality” from
analysis. Note that we similarly have }X‹} § supn•0 }Xn}8 and so we have good control
of X‹ in L8 and (so called) weak-L1-space. Calling upon the Marcinkiewicz interpolation
theory, such estimates often upgrade to a strong-Lp-inequality for any p P (1, 8), and
this is the case here as well:

Theorem 19.2 (Doob’s Lp-inequality) Let p P (1, 8) and let tXnun•0 be a non-negative
submartinagle such that supn•0 }Xn}p † 8. Define X‹ as in (19.1). Then

}X‹}p §

⇣ p
1 ´ p

⌘
sup
n•0

}Xn}p (19.4)

In particular, X‹ P Lp.

Proof. Abbreviate Zn := max0§j§n Xj. For each l ° 0, (19.3) reads

P(Zn ° l) §
1
l

E
�
Xn1tZn°lu

�
(19.5)
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Now multiply both sides by plp´1 and integrate to get

E(Zp
n) =

ª 8

0
plp´1P(Zn ° l)dl

§

ª 8

0
plp´2E

�
Xn1tZn°lu

�
dl =

p
p ´ 1

E
�
XnZp´1

n
� (19.6)

where the equalities are obtained by swapping the integral with respect to l with the
expectation using Tonelli’s theorem. Letting q be such that p´1 + q´1 = 1, next we apply
Hölder’s inequality under the expectation to get

E(Zp
n) §

p
p ´ 1

}Xn}p
⇥
E(Zq(p´1)

n )
⇤1/q (19.7)

Noting that q(p ´ 1) = p this reduces to
›› max

k§n
Xk

››
p §

p
p ´ 1

}Xn}p (19.8)

Bounding the right-hand side by supn•0 }X}p, we now take n Ñ 8 with the help of the
Monotone Convergence Theorem on the left to get the desired statement. ⇤

The above has been phrased for non-negative submartingales as this is what makes
the proofs easiest to write. Noting that the absolute value of a martingale is a non-
negative submartingale, we thus get:

Corollary 19.3 Let p ° 1 and let tMnu be a martingale or a non-negative submartingale such
that supn•0 }Mn}p † 8. Then Mn Ñ M8 := lim infnÑ8 Mn a.s. and in Lp.

Proof. The assumptions give supn•0 }Mn}1 † 8 and so Mn Ñ M8 a.s. by Theorem 15.1.
But |Mn| § M‹ := supn•0 |Mn| with M‹ P Lp by (19.4) (or }M‹}8 § supn•0 }Mn}8
when p = 8) and, since also |M8| § M‹ a.s. and thus |Mn ´ M8| § 2M‹ a.s., Dominated
Convergence tells us }Mn ´ M8}p Ñ 0 proving Mn Ñ M8 in Lp. ⇤

Notice that the previous statement blatantly fails if p = 1 because supn•0 }Mn} † 8

does not imply L1-convergence. To get Mn Ñ M8 in L1 one needs that tMnu is UI which
is weaker than M‹ P L1.

19.2 Square integrable martingales.

The case of Lp-martingales with p = 2 is special because L2 is a Hilbert space. This
allows us to state the following:

Lemma 19.4 Let tXnu be an L2-martingale (i.e., such that Xn P L2 for all n • 0) with respect
to filtration tFnu. Then

@k § ` § m § n : E
�
(Xn ´ Xm)(X` ´ Xk)

ˇ̌
Fk
�
= 0 a.s. (19.9)

and, in particular, the increments of X are orthogonal. Moreover,

@k § n : E(X2
n|Fk) = X2

k + E
�
(Xn ´ Xk)

2 ˇ̌
Fk
�

(19.10)

and so E(X2
n) = E(X2

k ) + E((Xn ´ Xk)2).
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Proof. The first property is immediate by inserting conditioning on Fm and noting that
E(Xn ´ Xm|Fm) = 0 by the fact that X is a martingale. The second property follows by
writing

X2
n =

�
Xk + (Xn ´ Xk)

�2
= X2

k + 2Xk(Xn ´ Xk) + (Xn ´ Xk)
2 (19.11)

and taking the conditional expectation given Fk with the help of (19.9). ⇤
The property (19.10) reflects on tX2

nu being a submartingale but has another interest-
ing consequence: Suppose that tMnu is a process such that

Mn ´ Mn´1 = X2
n ´ X2

n´1 ´ E
�
(Xn ´ Xn´1)

2 ˇ̌
Fn´1

�
(19.12)

Then (19.10) implies E(Mn ´ Mn´1|Fn´1) = 0 and so tMnu is a martingale! Summing
both sides and setting M0 := X2

0 it is easy to check that

Mn = X2
n ´

nÿ

k=1

E
�
(Xk ´ Xk´1)

2 ˇ̌
Fk´1

�
(19.13)

We will introduce a special notation:

Definition 19.5 (Bracket process) Given an L2
-martingale tXnun•0, its bracket process

txXynun•0 is a stochastic process defined by

xXyn :=
nÿ

k=1

E
�
(Xk ´ Xk´1)

2 ˇ̌
Fk´1

�
(19.14)

with xXy0 := 0. (All choices of versions of conditional expectations lead to the same

random variable, modulo changes on a null set.)

The notation for the process is taken from its counterpart in stochastic analysis where
it also referred to as the quadratic variation process. The following summarizes the im-
portant properties of the bracket process:

Lemma 19.6 For any L2-martingale tXnun•0, the bracket process txXynun•0 is predictable
and a.s. non-decreasing. The process tX2

n ´ xXnyun•0 is a martingale.

Proof. The properties follows from the fact that only Fn´1-measurable and a.s. non-
negative quantities appear on the right of (19.14). That tX2

n ´ xXnyun•0 is a martingale
reduces to the calculation after (19.12). ⇤

The bracket process is thus a predictable “compensator” that makes the submartin-
gale tX2

nu into a martingale. Such a process actually exists in large generality:

Theorem 19.7 (Doob decomposition) Let tFnu be a filtration and tXnu an adapted process
with Xn P L1 for every n • 0. Then there is a (a.s.) unique martingale tMn,Fnu and an (a.s.)
unique predictable process tAnu such that

A0 := 0 ^ @n • 0 : Xn = Mn + An (19.15)

for each n. Moreover, if tXn,Fnu is a submartingale, resp., supermartingale then tAnu is non-
decreasing, resp., nonincreasing a.s.
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Proof. We use the same argument as above. Define tAnun•0 by A0 := 0 and, recursively,

An+1 := An + E(Xn+1 ´ Xn|Fn) (19.16)

An induction argument verifies that tAnu is predictable with An P L1 for each n • 0.
Setting Mn := Xn ´ An yields an adapted process with

E(Mn+1 ´ Mn|Fn) = E(Xn+1 ´ Xn|Fn) ´ (An+1 ´ An) = 0 (19.17)

and so tMn,Fnu is a martingale. If tXnu is a submartingale, then An+1 • An (and simi-
larly for tXnu being a supermartingale.)

To show uniqueness, assume that tM1
nu is a martingale and tA1

nu a predictable process
such that A1

0 = 0 and Xn = M1
n + A1

n for each n • 0. Then M2
n := Mn ´ M1

n = A1
n ´ An

shows that tMn ´ M1
nu is a predictable martingale. But then M2

n+1 = E(M2
n+1|Fn) = M2

n
a.s. for each n • 0 implying M2

n = M2
0 = 0 a.s. for each n • 0. ⇤

For discrete-time processes, the Doob decomposition is merely a convenient rewrite.
However, its counterpart for continuous-time submartingales (called “Doob-Mayer de-
composition”) is highly non-trivial. An important consequence of the decomposition for
square integrable martingales is that

T stopping time ñ @n • 0 : xMT^¨yn = xMyT^n (19.18)

and that
xMy8 := lim

nÑ8xMyn (19.19)

always exists, albeit possibly taking an infinite value. The random variable xMy8 can be
used to control moments of the maximal function:

Theorem 19.8 Given an L2-martingale tMnu., let M‹ be its maximal function and xMy its
bracket process. Assuming also M0 = 0 a.s.,

E
�

M2
‹
�

§ 4 sup
n•0

E(M2
n) § 4E

�
xMy8

�
(19.20)

and

@a P (0, 1) : E
�

M2a
‹
�

§
2 ´ a
1 ´ a

E
�
xMy

a
8
�

(19.21)

Proof. For (19.20) we observe that Doob’s inequality in the form (19.8) gives

E
�
max
k§n

|Mn|
2�

§ 4E(M2
n) = 4

�
xMyn

�
(19.22)

where we used that tM2
n ´ xMynu is a martingale vanishing at n = 0. Taking n Ñ 8 on

both sides using the Monotone Convergence Theorem yields (19.20).
For (19.21) pick l ° 0 and denote

T := inf
 

n • 0 : xMyn+1 ° l2(
(19.23)

The predictability of xMy ensures that T is a stopping time. Note that then

P(T † 8) = P
�
xMy8 ° l2� (19.24)

Preliminary version (subject to change anytime!) Typeset: April 7, 2025



133 MATH 275B notes

Using T to define a stopped martingale tMT^nu, Doob’s inequality along with the fact
that tM2

T^n ´ xMyT^nu is a martingale and xMyT^n § l2 in turn gives

P
�

max
k§n

|MT^k| ° l
�

§
1

l2 E(M2
T^n)

=
1

l2 E
�
xMyT^n

�
§

1
l2 E

�
xMy8 ^ l2�

(19.25)

Hence we get
P(M‹ ° l) § P(T † 8) + P

�
sup
k•0

|MT^k| ° l
�

§ P
�
xMy8 ° l2�+ 1

l2 E
�
xMy8 ^ l2�

(19.26)

We now multiply both sides by 2al2a´1 and integrate over l P R+. On the left this
produces E(M2a‹ ). On the right we get two integrals, the first of which is

ª 8

0
2al2a´1P

�
xMy8 ° l2�dl

t=l2
=

ª 8

0
ata´1P

�
xMy8 ° t

�
dt = E

�
xMy

a
8
�

(19.27)

The second integral is treated as
ª 8

0
2al2a´1 1

l2 E
�
xMy8 ^ l2�dl = 2a

ª 8

0
l2a´3

 ª l2

0
P
�
xMy8 ° t

�
dt

!
dl

= 2a
ª 8

0

✓ª 8
?

t
l2a´3dl

◆
P
�
xMy8 ° t

�
dt

=
2a

2 ´ 2a

ª 8

0
ta´1P

�
xMy8 ° t

�
dt =

1
1 ´ a

E
�
xMy

a
8
�

(19.28)

where we used Tonelli’s theorem to exchange the two integrals and then integrated us-
ing that 2a ´ 3 † ´1. Putting (19.27–19.28) together we then get (19.21). ⇤

We remark that the inequalities (19.20–19.21) are precursors of Burkholder-Davis-Gundy
inequalities in stochastic analysis where, for continuous-time process, one can squeeze
E(M2a‹ ) by upper and lower bounds using E(xMy

a8) with universal (positive and finite
constants). For discrete time processes, these bounds hold as well albeit with xMy8
replaced by the quadratic variation process,

Q8 :=
ÿ

k•1

(Mk ´ Mk´1)
2 (19.29)

which for continuous martingales (indexed by continuous time) can be related to xMy8
by way of refinements of discrete-time approximations.

19.3 Some applications.

The conclusions for the maximal function in Theorem 19.8 have a number of interesting
consequences. We start with:
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Corollary 19.9 Let tMnu be a square integrable martingale and let txMynu denote its bracket
process. Set M8 := lim supnÑ8 Mn. Then

|M8| † 8 ^ Mn ›Ñ
nÑ8 M8 a.s. on

 
xMy8 † 8

(
(19.30)

Proof. Fix l ° 0 and recall the definition (19.23). For the stopped martingale tMT^nu

we have xMT^¨yn = xMyT^n § l2 and so (19.20) gives (MT^¨)‹
P L1. It follows that

tMT^nu is UI and so limnÑ8 MT^n exists in R a.s. But that means that Mn Ñ M8
with |M8| † 8 a.s. on tT = 8u = txMy8 § l2

u. Taking a union over l P N, the same
holds on txMy8 † 8u. ⇤

To see why Corollary 19.9 is useful, let us use it to generalize the Borel-Cantelli lem-
mas (Lemmas 2.5–2.6):

Lemma 19.10 (Lévy’s extension of Borel-Cantelli lemmas) Let tAkuk•1 be a sequence of
events and tFkuk•0 a filtration such that @k • 1 : Ak P Fk. Then

8ÿ

k=1

1Ak † 8 a.s. on
" 8ÿ

k=1

P(Ak|Fk´1) † 8

*
(19.31)

and
8ÿ

k=1

1Ak = 8 a.s. on
" 8ÿ

k=1

P(Ak|Fk´1) = 8

*
(19.32)

Proof. Denote

Mn :=
nÿ

k=1

⇥
1Ak ´ P(Ak|Fk´1)

⇤
(19.33)

Then tMnu is a martingale with bounded increments and, in particular, is a square inte-
grable martingale. For the bracket process we get

xMyn =
nÿ

k=1

⇥
P(Ak|Fk´1) ´ P(Ak|Fk´1)

2⇤
§

nÿ

k=1

P(Ak|Fk´1) (19.34)

It follows that xMy8 † 8 on t
∞

k•1 P(Ak|Fk´1) † 8u. On the latter event tMnu con-
verges and so supn•1 |Mn| † 8 a.s. which implies

∞
k•1 1Ak † 8 a.s., proving (19.31).

For (19.32), given any l ° 0 denote

Nl := inf
"

n • 0 :
nÿ

k=1

1Ak ° l

*
(19.35)

Since t1Ak u is adapted to tFku, this is a stopping time. Moreover, the fact that the in-
crements of M are bounded by 1 shows MNl^n § l + 1 a.s. Theorem 15.1 then asserts
a.s.-existence and finiteness of limnÑ8 MNl^n a.s. On t

∞
k•1 P(Ak|Fk) = 8u the limit

can be finite only if Nl † 8. Hence we must have
∞

k•1 1Ak ° l for each l ° 0 a.s. on
t
∞

k•1 P(Ak|Fk) = 8u proving (19.32). ⇤
We can strengthen Corollary 19.9 as follows:
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Theorem 19.11 (Strong law for martingales) Let tMnu be an L2-martingale. We then have

Mn

xMyn
›Ñ
nÑ8 0 a.s. on

 
xMy8 = 8

(
(19.36)

Proof. Abbreviate An := xMyn and set X := ((1 + A)´1
¨ M); i.e.,

Xn :=
nÿ

k=1

1
1 + Ak

(Mk ´ Mk´1) (19.37)

Since 1 + Ak • 1, the summands on the right are in L1 and X is a martingale. Moreover,
using that A is predictable we get

E
�
(Xk ´ Xk´1)

2 ˇ̌
Fk´1

�
=

1
(1 + Ak)2 E

�
(Mk ´ Mk´1)

2 ˇ̌
Fk´1

�

=
Ak ´ Ak´1
(1 + Ak)2 §

Ak ´ Ak´1)
(1 + Ak)(1 + Ak´1)

=
1

1 + Ak´1
´

1
1 + Ak

(19.38)

Summing the right-hand side on k • 1 gives 1 and so xXy8 § 1. Corollary 19.9
gives Xn Ñ 0 a.s. But then Kronecker’s lemma (Lemma 2.14) implies

Mn ´ M0

1 + An
›Ñ
nÑ8 0 a.s. on tA8 = 8u (19.39)

which now readily gives the claim. ⇤
Using the previous lemma one can show that the series on the right of (19.32) diverges

at exactly the same rate as the series on the right-diverges; namely:

Corollary 19.12 For events tBku and filtration tFku such that @k • 1 : Bk P Fk, we have
nÿ

k=1

1Ak

nÿ

k=1

P(Ak|Fk´1)

›Ñ
nÑ8 1 a.s. on

" 8ÿ

k=1

P(Ak|Fk´1) = 8

*
(19.40)

Proof. Assume that
∞8

k=1 P(Ak|Fk´1) = 8 and let Mn be the martingale (19.33). On
the event txMy8 † 8u we get M‹ † 8 a.s. and so the two sums constituting Mn
have to grow at the same rate. On txMy8 = 8u we in turn get Mn/xMyn Ñ 0 from
Theorem 19.11 and the same argument applies as well. ⇤

We note that for independent events, convergence in probability in (19.40) is readily
shown by way of Chebyshev’ inequality.

Another consequence of Corollary 19.9 comes in:

Lemma 19.13 Consider the Galton-Watson process tSnun•0 with S0 = 1 and off-spring dis-
tribution tp(n)un•0. Suppose that µ :=

∞
k•0 kp(k) ° 1 and

∞
k•1 k2p(k) † 8. Then there
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exists a random variable Z P L2 with

E(Z) = 1 and E(Z2) =
1

µ(µ ´ 1)

✓ ÿ

k•1

k2p(k) ´ µ2
◆

(19.41)

such that
Snµ´n

›Ñ
nÑ8 Z a.s. and in L2 (19.42)

Proof. Write s2 :=
∞

k•1 k2p(k) ´ µ2. We know that Mn := Snµ´n is a martingale
with EM0 = 1. Using that Sk conditioned on Fk´1 equals the sum of Sk´1 independent
random variables with variance s2, we get

E
�
(Mk ´ Mk´1)

2 ˇ̌
Fk´1

�
= Var(Mk|Fk´1)

= µ´2kVar(Sk|Fk´1) = s2Sk´1µ´2k (19.43)

Hence,
xMy8 = s2µ´2

ÿ

k•0

µ´2kSk (19.44)

Since E(Sk) = µk and µ ° 1, the Monotone Convergence Theorem gives E(xMy8) † 8

and so M‹ P L2. Hence, Mn Ñ Z := lim supnÑ8 Mn a.s. and in L2. The claim follows
from E(Z) = limnÑ8 E(Mn) = E(M0) = 1 and E(M2

n) = E(xMyn) Ñ E(xMy8). ⇤
An interesting consequence of the fractional-moment bound (19.21) comes in the fol-

lowing addition to the statements in Theorem 14.11:

Corollary 19.14 (A Wald’s-type equation) Let tXkuk•1 be i.i.d. with X1 P L2 and EX1 = 0.
Set Sn = X1 + ¨ ¨ ¨ + Xn and denote Fn := s(X1, . . . , Xn). Then for any stopping time T for
the filtration tFnu,

T P L1/2
ñ ST P L1

^ EST = 0 (19.45)

Proof. Under the assumptions tSnu is an L2-martingale with xSyn = E(X2
1)n. It follows

that Mn := ST^n is an L2-martingale with xMyn = E(X2
1)(T ^ n) and, in particular,

xMy8 = E(X2
1)T. The condition E(T1/2) † 8 thus gives E(xMy

1/28 ) † 8 which by
(19.21) implies M‹ P L1. Since T † 8 a.s. implies ST^n Ñ ST and |ST| § M‹ a.s., we
get ST P L1 and ST^n Ñ ST in L1. The claim follows from E(ST^n) = ES0 = 0. ⇤

19.4 Azuma-Hoeffding inequality.

The above estimates control the moments of martingales. One can do even better if the
martingale has bounded increments:

Theorem 19.15 (Azuma-Hoeffding inequality) Let tMnu be a submartingale with M0 = 0
such that, for some non-random sequence tcku of non-negative numbers,

@k = 1, . . . , n : |Mk ´ Mk´1| § ck a.s. (19.46)

Then

@l • 0 : P
�

Mn ° l) § exp
!

´
1
2

l2
∞n

k=1 c2
k

)
. (19.47)

Preliminary version (subject to change anytime!) Typeset: April 7, 2025



137 MATH 275B notes

Proof. The proof is based on the following inequality

@t P R @y P [´c, c] : ety
§ cosh(tc) +

y
c

sinh(tc) (19.48)

This follows from the fact that the right-hand side can be written as

cosh(tc) +
y
c

sinh(tc) = etc c + y
2c

+ e´tc c ´ y
2c

(19.49)

Under the condition |y| § c, both c+y
2c and c´y

2c are non-negative and they add up to one.
So, by the convexity of the exponential, the right-hand side is at most the exponential of

tc
c + y

2c
´ tc

c ´ y
2c

= ty (19.50)

and so we get (19.48).
To see how (19.48) implies the desired claim, consider the random variable etMn for

any t • 0. Since Mn is bounded, this is integrable and so

E
�
etMk

�
= E

�
etMk´1 E(et(Mk´Mk´1)|Fk)

�
(19.51)

But (19.48) ensures that

E(et(Mk´Mk´1)|Fk) § cosh(tck) +
1
ck

sinh(tck)E(Mk ´ Mk´1|Fk) (19.52)

and this is equal to cosh(tck) for martingales and • cosh(tck) for submartingales since
t • 0. Hence, using induction,

@t • 0 : E
�
etMk

�
§

nπ

k=1

cosh(tck) (19.53)

But x fiÑ log cosh(x) is symmetric, zero at x = 0 and with a decreasing third derivative
and so log cosh(x) §

1
2 x2. It follows that

E
�
etMk

�
§ exp

! t2

2

nÿ

k=1

c2
k

)
, t • 0. (19.54)

Now use the exponential Chebyshev inequality to write

@t • 0 : P
�

Mn ° l) § e´tlE
�
etMk

�
(19.55)

Plugging the above bound and minimizing over t shows that the optimal value to use is
t := l(

∞n
k=1 c2

k)
´1. Doing so yields the desired inequality. ⇤

Several generalizations exists that permit relaxing the strict boundedness require-
ment. However, none is such that it would simply permit to drop the boundedness
altogether and replace

∞n
k=1 c2

k by the expectation of M2
n.

For submartingales, one gets the bound on the upper tail of Mn. For martingales, the
symmetry yields two-sided control:

P
�
|Mn| ° l) § 2 exp

!
´

1
2

l2
∞n

k=1 c2
k

)
. (19.56)
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In particular, a typical value of Mn will be at most order
b∞n

k=1 c2
k . Bounds of this form

belong to the area of concentration of measure.

Further reading: Durrett, Sections 4.4 and 4.5
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