MATH275C: HW#4 Due: Tue, May 27

Problem 1: Let $X_n := Z_1 + \cdots + Z_n$ for Z_1, Z_2, \ldots i.i.d. \mathbb{Z} -valued with

$$P(Z_1=n)=\frac{c}{n^2+1}, \quad n\in\mathbb{Z},$$

where *c* is a constant that makes this a probability mass function on \mathbb{Z} . Prove that *X* is recurrent. (This shows that the Chung-Fuchs criterion is not sharp.)

Problem 2: Consider the simple symmetric random walk *X* on \mathbb{Z} and let P^x be the law for the walk started at *x*. We now "condition" on the walk to stay positive forever as follows: Set $\tau_y := \inf\{n \ge 0: X_n = y\}$ and prove that

$$Q^{x}(A) := \lim_{n \to \infty} P^{x}(X \in A \mid \tau_{n} < \tau_{0})$$

exists for all $x \ge 1$ and all events *A* depending only on finitely many coordinates. Then prove that Q^x is the law of a Markov chain that is an *h*-transform of the simple random walk by a suitable positive harmonic function *h* on \mathbb{Z}_+ .

Problem 3: Let *S* be a rooted binary tree which we may identify with the set $\bigcup_{n \ge 0} \{0, 1\}^n$ of finite binary sequences. The tree has a natural boundary $\partial S := \{0, 1\}^{\mathbb{N}}$ given by the set of infinite binary sequences. Endow *S* with the metric

$$\rho(\sigma, \sigma') = \rho(\sigma', \sigma) := \sum_{i=1}^{m} 2^{-i} |\sigma_i - \sigma'_i| + \sum_{i=m+1}^{n} 2^{-i}$$

whenever $\sigma \in \{0, 1\}^n$ and $\sigma' \in \{0, 1\}^m$ with $m \le n$ and extend it by suitable limits to ∂S . Note that $S \cup \partial S$ is compact and that ∂S may be identified with [0, 1). We write ϱ for the root, *x* for the vertices of *S* and α for points in ∂S below.

The tree is also a graph with any two sequences being neighbors whenever their length differs by one. Let *X* be the "random walk" on *S* which, technically, is a Markov chain with transition kernel $P(x, \cdot)$ uniform over the neighbors of *x*. Do as follows:

(1) Prove that *X* is transient and that, for any $x \in S$,

$$X_{\infty} := \lim_{n \to \infty} X_n$$
 exists $\land X_{\infty} \in \partial S \quad P^x$ -a.s.

(2) Writing \mathcal{L}_x for the law of X_∞ on ∂S under P^x defined by

$$\mathcal{L}_x(B) := P^x(X_\infty \in B)$$

for Borel $B \subseteq \partial S$, prove $\forall x \in S \colon \mathcal{L}_x \ll \mathcal{L}_\varrho \land \mathcal{L}_\varrho \ll \mathcal{L}_x$.

(3) Prove that for each bounded harmonic function *h* on *S* with *h*(*q*) = 1 there exists a bounded Borel function *g_h*: ∂*S* → ℝ such that

$$\forall x \in S: \quad h(x) = \int_{\partial S} K(x, \alpha) g_h(\alpha) \mathcal{L}_{\varrho}(\mathrm{d}\alpha)$$

where $K(x, \cdot) := \frac{d\mathcal{L}_x}{d\mathcal{L}_{\varrho}}$ is the Radon-Nikodym derivative of \mathcal{L}_x w.r.t. \mathcal{L}_{ϱ} . Then prove that

$$h(X_n) \xrightarrow[n \to \infty]{} g_h(X_\infty) \quad P^x$$
-a.s.

- (4) Construct a bounded harmonic function that alternates between 0 and 1 on a path to infinity, thus showing that (in spite of the above convergence along paths of the chain) such functions may not extend continuously to ∂S .
- (5) Construct a positive harmonic function h such that, under the h-transformed measure P_h^x , we have

$$X_n \xrightarrow[n \to \infty]{} 0 \quad P_h^x$$
-a.s.

where $\underline{0}$ is the sequence $(0, 0, ...) \in \partial S$.

The statement in (3) is a variant of *Poisson-kernel* representation of bounded harmonic functions by their boundary values. For unbounded non-negative functions, this is achieved by way of the Martin boundary, which by (5) coincides with ∂S .