HW#2: due Mon 1/27/2020

Problem 1: Let ν be a measure on (X, \mathcal{F}). A family \mathcal{M} of measures on (X, \mathcal{F}) is said to be uniformly absolutely continuous (AC) with respect to ν if

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall \mu \in \mathcal{M} \ \forall A \in \mathcal{F}: \ \nu(A) < \delta \ \Rightarrow \ \mu(A) < \epsilon.$$

Given a finite measure space (X, \mathcal{F}, ν) and a non-empty set $B \subseteq L^1(X, \mathcal{F}, \nu)$, consider the measures $\mu_f(A) := \int_A |f| \, d\nu$, $f \in B$. Show that

$$B \text{ is uniformly integrable } \iff \{ \mu_f: f \in B \} \text{ is uniformly AC w.r.t. } \nu \wedge \sup_{f \in B} \mu_f(X) < \infty \quad (1)$$

Here B is uniformly integrable on a finite measure space if

$$\forall \epsilon > 0 \ \exists M > 0: \sup_{f \in B} \int_{\{|f| > M\}} |f| \, d\nu < \epsilon$$

(The definition of uniform integrability on infinite measure spaces is more complicated; one also needs to impose $\sup_{f \in B} \int_{\{|f| < 1/M\}} |f| \, d\nu < \epsilon$ and $\sup_{f \in B} \int |f| \, d\nu < \infty$.)

Problem 2: (L^1-convergence and uniform integrability) Let $\{f_n\}_{n \geq 1} \subseteq L^1(\mu)$ for μ finite. Prove that if $f_n \to f$ pointwise μ-a.e., then

$$f_n \to f \text{ in } L^1(\mu) \iff \{f_n\}_{n \geq 1} \text{ is uniformly integrable}$$

(The same is TRUE with the corresponding more involved definition of uniform integrability on infinite measure spaces.)

Problem 3: (Abstract change-of-variables formula) If μ and ν are σ-finite measures with $\mu \ll \nu$, the Radon-Nikodym theorem ensures that $\mu = f \nu$. We call this f the Radon-Nikodym derivative of μ with respect to ν with notation $\frac{d\mu}{d\nu}$. Prove that

$$\forall g \in L^1(\mu): \quad g \frac{d\mu}{d\nu} \in L^1(\nu) \wedge \int g \, d\mu = \int g \frac{d\mu}{d\nu} \, d\nu$$

Problem 4: (Conditional expectation) Let ν be a finite measure on a measurable space (Ω, \mathcal{F}) and let $f \in L^1(\nu)$. Given a σ-algebra $\mathcal{G} \subseteq \mathcal{F}$, prove the existence of a \mathcal{G}-measurable function $f_\mathcal{G}$ such that

$$\forall E \in \mathcal{G}: \quad \int_E f_\mathcal{G} \, d\nu = \int_E f \, d\nu$$

Prove that this $f_\mathcal{G}$ is unique up to changes on ν-null sets. Show that $f_\mathcal{G} \in L^1(\nu)$ and that, for every $f \in L^1(\nu)$,

$$\{ f_\mathcal{G}: \mathcal{G} \subseteq \mathcal{F}, \sigma\text{-algebra} \} \text{ is uniformly integrable}$$

In probability (where ν is of total mass one) we call $f_\mathcal{G}$ the conditional expectation of f given \mathcal{G}, with notation $E(f|\mathcal{G})$.
Problem 5: (Conditional expectation does not preserve pointwise convergence) Using the notation from the previous problem (with ν finite), do as follows:

1. Prove that if $f_n \to f$ in $L^1(\nu)$ then also $(f_n)_G \to f_G$ in $L^1(\nu)$, uniformly in the σ-algebra $G \subseteq \mathcal{F}$. Hint: Show that $f \mapsto f_G$ is a contraction, meaning $\|f_G\|_{L^1(\nu)} \leq \|f\|_{L^1(\nu)}$.
2. Give an example of $\{f_n\}_{n \geq 1} \subseteq L^1(\nu)$ and G such that f_n converges pointwise and in $L^1(\nu)$ to some $f \in L^1(\nu)$ yet $(f_n)_G$ does NOT converge to f_G pointwise a.e.

Problem 6: (Radon-Nikodym derivative is a derivative) Let μ, ν be finite measures on some measurable space (X, \mathcal{F}). Construct a family $\{P_t : t \geq 0\} \subset \mathcal{F}$ of sets such that (defining $N_t := X \setminus P_t$),

(a) (P_t, N_t) is a Hahn decomposition of X with respect to the signed measure $\mu - t\nu$,

(b) $t \mapsto P_t$ is non-increasing, i.e., $0 \leq s < t$ implies $P_t \subset P_s$.

Prove that if $\mu \ll \nu$, then for $A_{k,n} := P_{k2^{-n}} \setminus P_{(k+1)2^{-n}}$,

$$\sum_{k \geq 0} k2^{-n}1_{A_{k,n}} \to \frac{d\mu}{d\nu} \quad \nu\text{-a.e.}$$

Hint: Observe that (assuming $\mu \ll \nu$) $\{\frac{d\mu}{d\nu} \geq t\} = P_t \ \nu\text{-a.e.}

Problem 7: (Operations with Radon-Nikodym derivative) Let μ, ν, κ be σ-finite measures on some measurable space. Prove that:

1. if $\mu \ll \nu$ and $\nu \ll \kappa$ then $\mu \ll \kappa$ and

$$\frac{d\mu}{d\kappa} = \frac{d\mu}{d\nu} \frac{d\nu}{d\kappa} \quad \kappa\text{-a.e.}$$

2. if μ and ν are both finite and $\mu \ll \nu$ and $\nu \ll \mu$, then

$$0 < \frac{d\mu}{d\nu} < \infty \quad \text{and} \quad \frac{d\nu}{d\mu} = \left(\frac{d\mu}{d\nu}\right)^{-1} \quad \nu\text{-a.e.}$$

3. if $\mu \ll \nu$ and $\kappa := \mu + \nu$ then $\mu \ll \kappa$ and $f := \frac{d\mu}{d\kappa}$ obeys

$$0 \leq f < 1 \quad \nu\text{-a.e.} \quad \text{and} \quad \frac{d\mu}{d\nu} = \frac{f}{1-f} \quad \nu\text{-a.e.}$$

Problem 8: (Radon-Nikodym for product measures) Show that if μ_1, ν_1 are σ-finite measures on (X, \mathcal{F}) and μ_2, ν_2 are σ-finite measures on (Y, \mathcal{G}), then $\mu_1 \ll \nu_1$ and $\mu_2 \ll \nu_2$ implies

$$\mu_1 \otimes \mu_2 \ll \nu_1 \otimes \nu_2$$

and

$$\frac{d(\mu_1 \otimes \mu_2)}{d(\nu_1 \otimes \nu_2)}(x, y) = \frac{d\mu_1}{d\nu_1}(x) \frac{d\mu_2}{d\nu_2}(y) \quad \text{for} \ \nu_1 \otimes \nu_2\text{-a.e. } (x, y)$$

Here $\mu_1 \otimes \mu_2$ is the product of μ_1 and μ_2 on the product σ-algebra $\mathcal{F} \otimes \mathcal{G}$.