
HW#9: due Fri 6/9/2023, 11:59PM

This exercise practices (real) analytic functions and Fourier series.

Problem 1: Let f : R Ñ R and x0 P R be such that f is analytic at x0. This means that
there exists r P p0,8s and a sequence tcnunPN P RN with

lim sup
nÑ8

|cn|
1{n ď

1
r

and

@x P px0 ´ r, x0 ` rq : x P Domp f q ^ f pxq “
8
ÿ

n“0

cnpx´ x0q
n

Prove that f is analytic at each a P px0 ´ r, x0 ` rq. (This requires showing that f can be
expressed as a power series in x´ a for each a P px0 ´ r, x0 ` rq.)

Problem 2: Let f : R Ñ R be analytic at x0. Prove that

DA P p0,8qDδ ą 0@n P N : sup
xPpx0´δ,x0`δq

ˇ

ˇ f pnqpxq
ˇ

ˇ ď Aδ´nn!

(Taylor’s Theorem then shows that this is also sufficient for analyticity at x0.)

Problem 3: Let f , g : R Ñ R be functions and let x0 P R be such that g is analytic at x0
and f is analytic at gpx0q. Express f ˝ g as a power series centered at x0 and thus show
that f ˝ g is analytic at x0.
Note: You can use this (and facts about exp and log we proved in class) to prove that
power function, f pxq :“ xα, is analytic on Domp f q :“ p0,8q for each α P R.

Problem 4: Recall that the tangent function is defined by tanpxq :“ sinpxq
cospxq . We take

Domptanq :“ p´π{2, π{2q. Prove the following:
(1) tan is continuous and strictly increasing on its domain with Ranptanq “ R

(2) the inverse of tan, often called arctan, is differentiable on R with

@x P R : arctan1pxq “
1

1` x2

(3) arctan is analytic on p´1, 1qwith

@x P p´1, 1q : arctanpxq “
8
ÿ

n“0

p´1qn

2n` 1
x2n`1

(4) The series converges at x “ 1 and we have

π

4
“ arctanp1q “

8
ÿ

n“0

p´1qn

2n` 1



2

Note: Part (4) requires exchange of the limits x Ñ 1´ and the infinite sum which is often
referred to Abel’s Theorem that deals with limits of power series at their convergence
radius in large generality. In this particular case, you can control this exchange directly.

Problem 5: Prove that the linear span (over C) of functions tz ÞÑ zn : n P Zu is an
algebra that satisfies the conditions of the complex-valued Stone-Weierstrass Theorem
on the metric space tz P C : |z| “ 1u endowed with the Euclidean metric on C. Use this
to prove the following:
(1) For each f : r0, 1s Ñ R continuous with f p0q “ f p1q and each ε ą 0, there is N P N

and coefficients c´N , . . . , cN P C such that

sup
xPr0,1s

ˇ

ˇ

ˇ
f pxq ´

N
ÿ

n“´N

cne2πinx
ˇ

ˇ

ˇ
ă ε

(2) Assuming that f is as in p1q, we then have

@x P r0, 1s @α P r0, 1sr Q : lim
nÑ8

1
n

n´1
ÿ

k“0

f px` kα mod 1q “
ż 1

0
f pzqdz

(3) Give an example of an f such that the statement in (2) is FALSE for α P r0, 1s XQ.
Note: What (2) shows is that irrational rotations of the circle become asymptotically uni-
formly distributed over r0, 1s. This gives a basic justification of the use of quasirandom
numbers instead of truly random numbers in computer simulations.

Problem 6: Let f P Cpr0, 1s, Rq be such that f p0q “ f p1q “ 0 and for each n P N let

cn :“ 2
ż 1

0
f pxq sinpπnxqdx

Prove that
8
ÿ

k“1

|ck| ă 8 ñ

n
ÿ

k“1

ck sinpπkxq ÝÑ
nÑ8

f pxq uniformly

Hint: Either follow the corresponding proof for the Fourier series or prove that the linear
span of tx ÞÑ sinpπnxq : n ě 1u is dense in t f P Cpr0, 1s, Rq : f p0q “ f p1q “ 0u with
respect to the uniform metric and argue from there.

Problem 7: (RUDIN) EX 12, PAGE 198

Problem 8: (RUDIN) EX 13, PAGE 198

Problem 9: (RUDIN) EX 14, PAGE 199


