HW#6: due Mon 5/15/2023

This exercise is largely focused on the Stieltjes integral Sb fdg defined as the limit of the Riemann-
Stieltjes sums S(f, dg, IT) for marked partitions I'T of [4, b] as the mesh |II| tends to zero. We write

RS(g, [a,b]) = {f: [2,b] - R: L fdg exists}

The definition of Sﬁ fdg in the textbook goes via upper and lower Darboux sums but that makes
it limited to ¢ monotone or, by Jordan decomposition, of bounded variation.

Problem 1: Define f: (0,0) — R by
X) = J 1dt
1t

(1) fis continuous and strictly increasing on (0, o0)

@) ¥,y € (0,): f(x-y) = f(x) + )

(3) f~! exists with Dom(f~!) = R and obeys Vx, y eR: flx+y)=f1x) fy)
(4) f~!is continuouson Rand 32 > 1V¥x e R: f~(x) = a*

Prove the following facts:

Note: This shows that f~! is an exponential function and f is a logarithm.

Problem 2: Let f,g: [a,b] — R be such that f € RS(g, [4,b]). Prove that there exists a
partition IT = {t;}"_ of [a, b] such that

Vi=0,...,n: sup |f(x)| <0 Vv (‘v’x,ye[ti_l,ti]: g(x)zg(y))

xe[ti_1t]

In particular, show that if ¢ is NOT constant on any non-degenerate subinterval of [a, b],
then f € RS(g, [4, b]) implies that f is bounded.

Problem 3: Leta < b be reals and {a;,},en € RN a sequence such that Y, |an| < 0.
Given a sequence {x,}neN € [4,b]N, define h: [a,b] — R by

0]
x) = Z “nl[x,,,oo)(x)
n=0

where we recall that 14 (x) equals one if x € A and zero otherwise. (The series converges
for each x by our assumptions on {«, },en.) Prove that for all continuous f: [a,b] — R,

f eRS(h, J fdh = (xnf(xn)

n=0
Then do the same assuming only that f is bounded and continuous at x;,, for all n € IN.
Note: This shows that the Stieltjes integral includes finite sums and convergent series.
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Problem 4: Leta < b be reals and let g: [a,b] — R be right-continuous and of bounded
variation; i.e., V(g, [a,b]) < oo. Prove that there exist {a,}neny € RN with 37_ [a,| < o0
and a sequence {x, },eN € [4,b]N such that for & as in the previous problem,

g — his continuous A V(g —h,[a,b]) <o

Abbreviating § := ¢ — h, prove that then for each f € RS(g, [a,b]),
0

b b
feRS(3,[a,b]) A f fdg = anf(xn) +f fdg

a n=0 a
Note: Writing ¢ = h + ¢ as above is also referred to as Jordan decomposition. Such
a decomposition is unique; h is then called the jump part of ¢ while ¢ is the continuous
part of g. (In probabilistic applications, this gives a decomposition into a discrete and
continuous random variable.) The example ¢ := 1g shows that no such decomposition

may exist once g is not of bounded variation.

Problem 5: Leta < b be reals and let f, g: [a,b] — R be functions such that

(1) fis Riemann integrable on [a, b|, and
(2) giscontinuous on [a, b], differentiable on (a, b) with ¢’ Riemann integrable on [a, ].

Prove that f € RS(g, [a,b]) and

b b
| £as = | g s
Then show that also g € RS(f, [a,b]) and
b b
L gdf = f(b)g(b) — f(a)g(a) — L f(x)g' (x)dx

Note: The existence and Riemann integrability of ¢’ is crucial here as the integrals Ss fdg
b . . . .
and { ¢df may fail to exist when g is only continuous!

Problem 6: Prove the following Mean-Value Theorems: Let f,g: [4,b] — R be such
that f is continuous and g non-decreasing. Then f € RS(g, [4, b]) and

b
Jc € [a,b]: J fdg = f(c)[g(b) —g(a)]

Assuming only that f is Riemann integrable and g is non-decreasing, prove that then

b c b
seclnbl: | fgds =g | fodx+g) [ feods

Hint: The first statement relies on the Intermediate Value Theorem. For the second state-
ment, write the Riemann integral on the left as Ss gdh for a suitable h.
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Problem 7: Let f,g: [4,b] — R be functions and assume that f is bounded and g is
continuous and of bounded variation; i.e., V (g, [a,b]) < o. Let vg: [a,b] — R be defined
by ve(t) := V(g,[a,t]). Prove that

feRS(g [a,b]) < feRS(vg,[a,b])
and, if both TRUE, then also |f| € RS(vy, [a, b]) and
b b
| ras| < [ 171y

Hint: For the implication = above, consider first showing that for each € > 0 there
is 6 > 0 such thatif IT = {t;}_; is a partition of [a, b], then

T <8 = Y [og(t) = og(ti1) = |g(t) — (tin)]| < e
i=1

The implication = holds without a continuity assumption on g but that requires treating
discontinuity points of g explicitly.

Problem 8: Prove Cousin’s Theorem: Let a < b be reals and assume that 7 is a collection
of non-degenerate closed subintervals of [a,b] with the following property: For each
x € [a, b] there is § > 0 such that all non-degenerate closed intervals [c, d| satisfying
[c,d] < [a,b] A xe[c,d] Ad—c<d
belong to Z. Prove that then there is a partition of [, b] consisting only of intervals in Z,
i.e., that therearea =ty <t < --- < t, = b satisfying
Vi = 1,‘ .o ne [ti—lrti] el

Note: Cousin’s theorem ensures that, in the definition of Henstock-Kurzweil integral, for
each gauge function there is at least one marked partition obeying the gauge restriction.




