
HW#6: due Mon 5/15/2023
This exercise is largely focused on the Stieltjes integral

şb
a f dg defined as the limit of the Riemann-

Stieltjes sums Sp f , dg, Πq for marked partitions Π of ra, bs as the mesh }Π} tends to zero. We write

RSpg, ra, bsq “
!

f : ra, bs Ñ R :
ż b

a
f dg exists

)

The definition of
şb

a f dg in the textbook goes via upper and lower Darboux sums but that makes
it limited to g monotone or, by Jordan decomposition, of bounded variation.

Problem 1: Define f : p0,8q Ñ R by

f pxq :“
ż x

1

1
t

dt

Prove the following facts:
(1) f is continuous and strictly increasing on p0,8q
(2) @x, y P p0,8q : f px ¨ yq “ f pxq ` f pyq
(3) f´1 exists with Domp f´1q “ R and obeys @x, y P R : f´1px` yq “ f´1pxq ¨ f´1pyq
(4) f´1 is continuous on R and Da ą 1@x P R : f´1pxq “ ax

Note: This shows that f´1 is an exponential function and f is a logarithm.

Problem 2: Let f , g : ra, bs Ñ R be such that f P RSpg, ra, bsq. Prove that there exists a
partition Π “ ttiu

n
i“0 of ra, bs such that

@i “ 0, . . . , n : sup
xPrti´1,tis

ˇ

ˇ f pxq
ˇ

ˇ ă 8 _
`

@x, y P rti´1, tis : gpxq “ gpyq
˘

In particular, show that if g is NOT constant on any non-degenerate subinterval of ra, bs,
then f P RSpg, ra, bsq implies that f is bounded.

Problem 3: Let a ă b be reals and tαnunPN P RN a sequence such that
ř

nPN |αn| ă 8.
Given a sequence txnunPN P ra, bsN, define h : ra, bs Ñ R by

hpxq :“
8
ÿ

n“0

αn1rxn,8qpxq

where we recall that 1Apxq equals one if x P A and zero otherwise. (The series converges
for each x by our assumptions on tαnunPN.) Prove that for all continuous f : ra, bs Ñ R,

f P RSph, ra, bsq ^
ż b

a
f dh “

8
ÿ

n“0

αn f pxnq

Then do the same assuming only that f is bounded and continuous at xn, for all n P N.
Note: This shows that the Stieltjes integral includes finite sums and convergent series.
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Problem 4: Let a ă b be reals and let g : ra, bs Ñ R be right-continuous and of bounded
variation; i.e., Vpg, ra, bsq ă 8. Prove that there exist tαnunPN P RN with

řn
n“0 |αn| ă 8

and a sequence txnunPN P ra, bsN such that for h as in the previous problem,

g´ h is continuous ^ V
`

g´ h, ra, bs
˘

ă 8

Abbreviating g̃ :“ g´ h, prove that then for each f P RSpg, ra, bsq,

f P RS
`

g̃, ra, bs
˘

^

ż b

a
f dg “

8
ÿ

n“0

αn f pxnq `

ż b

a
f dg̃

Note: Writing g “ h ` g̃ as above is also referred to as Jordan decomposition. Such
a decomposition is unique; h is then called the jump part of g while g̃ is the continuous
part of g. (In probabilistic applications, this gives a decomposition into a discrete and
continuous random variable.) The example g :“ 1Q shows that no such decomposition
may exist once g is not of bounded variation.

Problem 5: Let a ă b be reals and let f , g : ra, bs Ñ R be functions such that
(1) f is Riemann integrable on ra, bs, and
(2) g is continuous on ra, bs, differentiable on pa, bqwith g1 Riemann integrable on ra, bs.

Prove that f P RSpg, ra, bsq and
ż b

a
f dg “

ż b

a
f pxqg1pxqdx

Then show that also g P RSp f , ra, bsq and
ż b

a
g df “ f pbqgpbq ´ f paqgpaq ´

ż b

a
f pxqg1pxqdx

Note: The existence and Riemann integrability of g1 is crucial here as the integrals
şb

a f dg
and

şb
a gdf may fail to exist when g is only continuous!

Problem 6: Prove the following Mean-Value Theorems: Let f , g : ra, bs Ñ R be such
that f is continuous and g non-decreasing. Then f P RSpg, ra, bsq and

Dc P ra, bs :
ż b

a
f dg “ f pcq

“

gpbq ´ gpaq
‰

Assuming only that f is Riemann integrable and g is non-decreasing, prove that then

Dc P ra, bs :
ż b

a
f pxqgpxqdx “ gpaq

ż c

a
f pxqdx` gpbq

ż b

c
f pxqdx

Hint: The first statement relies on the Intermediate Value Theorem. For the second state-
ment, write the Riemann integral on the left as

şb
a gdh for a suitable h.
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Problem 7: Let f , g : ra, bs Ñ R be functions and assume that f is bounded and g is
continuous and of bounded variation; i.e., Vpg, ra, bsq ă 8. Let vg : ra, bs Ñ R be defined
by vgptq :“ Vpg, ra, tsq. Prove that

f P RS
`

g, ra, bs
˘

ô f P RS
`

vg, ra, bs
˘

and, if both TRUE, then also | f | P RSpvg, ra, bsq and
ˇ

ˇ

ˇ

ˇ

ż b

a
f dg

ˇ

ˇ

ˇ

ˇ

ď

ż b

a
| f |dvg

Hint: For the implication ñ above, consider first showing that for each ε ą 0 there
is δ ą 0 such that if Π “ ttiu

n
i“0 is a partition of ra, bs, then

}Π} ă δ ñ

n
ÿ

i“1

ˇ

ˇ

ˇ
vgptiq ´ vgpti´1q ´

ˇ

ˇgptiq ´ gpti´1q
ˇ

ˇ

ˇ

ˇ

ˇ
ă ε

The implicationñ holds without a continuity assumption on g but that requires treating
discontinuity points of g explicitly.

Problem 8: Prove Cousin’s Theorem: Let a ă b be reals and assume that I is a collection
of non-degenerate closed subintervals of ra, bs with the following property: For each
x P ra, bs there is δ ą 0 such that all non-degenerate closed intervals rc, ds satisfying

rc, ds Ď ra, bs ^ x P rc, ds ^ d´ c ă δ

belong to I . Prove that then there is a partition of ra, bs consisting only of intervals in I ,
i.e., that there are a “ t0 ă t1 ă ¨ ¨ ¨ ă tn “ b satisfying

@i “ 1, . . . , n : rti´1, tis P I
Note: Cousin’s theorem ensures that, in the definition of Henstock-Kurzweil integral, for
each gauge function there is at least one marked partition obeying the gauge restriction.


