
HW#1: due Mon 4/10/2023, 11:59PM
The purpose of this assignment is to give some additional practice on topics treated in 131AH; in
particular, infima/suprema, limits of sequences and infinite series, metric spaces. We then add
three additional problems on continuity which is the topic we will open up 131BH with.

Problem 1: Let tAnunPN be a sequence of subsets of a set B which we note is partially
ordered by theĎ relation. In light of this (and the fact that suprema w.r.t.Ď are achieved
by unions and infima by intersections) we define
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We also say
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(This shows that the use of limes superior and limes inferior for characterization/definition
of the limit works even in partially ordered spaces provided suprema and infima exist.)

Problem 2: (Fekete lemma) Let tanuně1 be a sequence of non-negative reals that is sub-
additive in the sense
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Problem 3: Prove that
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converges when p ą 1 and diverges when p ď 1. (Do not rely on the integral criterion
as we have not yet started rigorous treatment of the Riemann integral.)

Problem 4: Prove the following special case of Riemann’s rearrangement theorem: For
each sequence tanunPN of reals such that
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bijection φ : N Ñ N such that
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with the (improper) limit taken in extended reals.
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Problem 5: Let pX, ρq be a metric space and A Ď X a (non-empty) compact set. Then for
each x P X there exists a “closest element of A to x” in the sense

@x P X Dz P A : ρpx, zq “ inf
 

ρpx, yq : y P Au

Problem 6: Let pX, $q be a metric space and f : X Ñ X an everywhere-defined isometry
— i.e., a map with Domp f q “ X and ρp f pxq, f pyqq “ ρpx, yq for all x, y P X. Prove

X (sequentially) compact ñ Ranp f q “ X

Hint: Consider the contrapositive.

Problem 7: A faithful map of the United States lies on the dinner table in a house in
Denver, CO. Prove that there is one, and only one, point on the map that lies exactly
above the physical point (in US territory) it represents. Note: This is a word problem
that requires a suitable interpretation in metric space theory. Do not assume that the
North on the map points in the actual North direction at the map location.

Problem 8: (RUDIN) PAGE 98, EX 2 (For f continuous, f pEq Ď f pEq)

Problem 9: (RUDIN) PAGE 98, EX 4 (Continuous image of a dense set is dense.)

Problem 10: (RUDIN) PAGE 99, EX 6 (Continuity characterized by graph of function.)


