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9. SUPREMUM AND INFIMUM

The algebraic deficiencies described above seem to be related to the fact that the rational
axis contains “holes.” Filling some of these “holes” with radicals helps somewhat but
(as we explained towards the end of the last section) “holes” remain even if all roots
of all polynomial equations with integer coefficients are added in. As it turns out, the
presence of the “holes” is closely related to another deficiency of the rationals, this time
of the total ordering relation §. We will start discussing the relevant concepts at the
general level and then specialize to rationals.

Consider a set E with an ordering §; i.e., a reflexive, antisymmetric and transitive
relation. We do not assume that every pair of elements from E is ordered; so § can be
just a partial order. We then put out the following concepts:

Definition 9.1 (Upper/lower bound) Given a set A Ñ E, an element x P E is

‚ an upper bound on A if @y P A : y § x,

‚ a lower bound on A if @y P A : x § y.

If A admits an upper bound, we say that it is bounded above while if it admits a lower

bound, we say that it is bounded below. If it admits both, then we say that A is bounded.

Notice that being and upper (or lower) bound entails two things: First, every element
of A compares to x and, second, the comparison is as stated. Here are some examples:

‚ Given a set F, let E be the powerset PpFq ordered by the set inclusion,

@A, B P PpFq : A § B :“ A Ñ B. (9.1)

For any set A Ñ PpFq of subsets of F, including the case when A is empty, the
element x :“ F is an upper bound on A and x :“ H is a lower bound on A.
(Hence, x :“ F is the maximal element of PpFq and x :“ H is the minimal element.)

‚ Consider the set of pairs E :“ Q ˆ Q and define the lexicographic order on E via

px, yq § px̃, ỹq :“ x † x̃ _
`
x “ x̃ ^ y § ỹ

˘
(9.2)

The set
A :“ tpx, yq P Q ˆ Q : 0 § x, y § 1u (9.3)

then admits lower bounds p´1, ´1q, p´1, 0q and even p0, 0q and upper bounds
p2, 2q, p1, 2q and even p1, 1q. On the other hand, the set

A :“ tpx, yq P Q ˆ Q : x ` y “ 0u (9.4)

admits no upper bound and no lower bound in E.
If a set A admits an upper bound, a natural next question is whether one can find

the most efficient upper bound. We take this to mean the least upper bound which is
the one that compares to and is less than all the other upper bounds. This, and the
corresponding concept for the lower bound, is the content of:

Definition 9.2 (Supremum and infimum) Given a set A Ñ E, an element x P E is

‚ the supremum of A if x is the least upper bound of A, i.e.,

`
@y P A : y § x

˘
^

´
@z P E :

`
@y P A : y § z

˘
ñ x § z

¯
(9.5)
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‚ the infimum of A if it is the greatest lower bound of A, i.e.,

`
@y P A : x § y

˘
^

´
@z P E :

`
@y P A : z § y

˘
ñ z § x

¯
(9.6)

We note that, just as upper/lower bounds, a supremum/infimum may not exist. Still,
the use of the definite article in the definition is justified by:

Lemma 9.3 For every set A, there is at most one supremum and at most one infimum.

Proof. Suppose x P E and x̃ P E are both suprema of A. Then both x and x̃ are upper
bounds on A. The fact that x is a supremum of A then forces x § x̃ while the fact that x̃ is
a supremum of A forces x̃ § x. The antisymmetry of § then forces x̃ “ x. The argument
for the infimum is analogous and so we omit it. ⇤

We will henceforth write suppAq for the supremum of A and infpAq for the infimum
of A, whenever these elements exist. To give an example where the existence can be
guaranteed, we note:

Lemma 9.4 For the setting of E :“ PpFq (with F a non-empty set) ordered by set inclusion Ñ,

@A Ñ PpFq : A ‰ H ñ

´
suppAq “

§
A ^ infpAq “

£
A

¯
(9.7)

In addition, we have suppHq “ H and infpHq “ F.

Proof. Left to homework. ⇤
The trivial inclusion

ì
A Ñ

î
A implies that infpAq is less or equal than suppAq for A

nonempty. This in fact holds very generally:

Lemma 9.5 Let E be a set with ordering relation §. Then for any A Ñ E admitting both
suppAq and infpAq,

A ‰ H ñ infpAq § suppAq (9.8)

Proof. Since A ‰ H, there exists a P A. But then a § suppAq by the fact that the
supremum is an upper bound and infpAq § a by the fact that infimum is a lower bound.
The transitivity of § then gives the claim. ⇤

The above shows that, for non-empty set, the infimum and supremum are ordered
intuitively. However, as demonstrated by the case of A “ H in Lemma 9.4 this fails for
A “ H. (We will see another example of this when we discuss extended reals.)

Notice also that the notions of supremum and infimum appear quite symmetric. This
is particularly true for the context of ordered fields. In general, we can still get the
following:

Lemma 9.6 Let E be a set with an ordering relation §. Then for all non-empty sets A, B Ñ E
such that infpBq and suppAq exist,

´
@a P A @b P B : a § b

¯
ô suppAq § infpBq (9.9)

Proof. The implication  is obtained from a § suppAq for each a P A and infpBq § b for
each b P B, so we will focus on ñ in (9.9). The premise says that every a P A is a lower

Preliminary version (subject to change anytime!) Typeset: February 3, 2023



MATH 131AH notes 42

bound on B. Since B admits an infimum, i.e., the greatest lower bound, we thus get

@a P A : a § infpBq (9.10)

But this means that infpBq is an upper bound on A. Since A admits a supremum, i.e., the
least upper bound, we must thus have suppAq § infpBq as claimed. ⇤

The following example of a situation where the infimum exists has been a subject of
recent homework assignment:

Lemma 9.7 Consider the naturals N ordered by the relation §. Then

@A Ñ N : A ‰ H ñ

´
infpAq exists ^ infpAq P A

¯
(9.11)

There is a slick “existential” proof based on an argument by contradiction. While
this would prove the above claim, we will follow a different argument which ultimately
constructs the map A fiÑ infpAq for all non-empty A Ñ N. (This is done in the proof of
Lemma 9.8.) Having this map at our disposal will allow us to avoid reference to Axiom
of Choice whenever “picking” an natural from a set thereof is needed.
Proof. First we invoke the recursion principle to construct a collection tXn : n P Nu of
elements of N such that

X0 “ 0 ^

˜
@n P N : Xn`1 “

#
Xn ` 1, if Xn R A,
Xn, if Xn P A.

¸
(9.12)

The underlying idea is very intuitive: We list progressively lower bounds on A starting
from 0 until a first element of A is hit at which point the sequence freezes to the current
value. We now make a couple of observations.

Step 1: @n P N : Xn § n ^ Xn`1 § Xn ` 1.

The first part of the statement, @n P N : Xn § n is proved by induction. (We omit the
details.) The second part follows directly from (9.12).

Step 2: @n P N : Xn is a lower bound on A.

We prove this by induction. Let Pn :“ p@x P A : Xn § xq. Then P0 is TRUE because
@x P N : 0 § x. Next assume Pn is TRUE. If Xn R A and there exists k P A with k § Xn,
then k † Xn and Xn is not a lower bound. It follows that Pn ^ Xn R A implies that Xn ` 1
is a lower bound on A. But Xn`1 § Xn ` 1 by Step 1 and so Xn`1 is then a lower bound
on A as well. Summarizing these steps, we have shown

Pn ^ Xn R A ñ Xn`1 is a lower bound on A (9.13)

If, on the other hand, Xn P A, then (9.12) gives Xn`1 “ Xn and so we obtain

Pn ^ Xn P A ñ Xn`1 is a lower bound on A (9.14)

Combining (9.13–9.14) proves Pn ñ Pn`1 and the claim in Step 2 holds by induction.

Step 3: p@m P A : Xm † mq ñ p@m P N : Xm “ mq

Suppose @m P A : Xm † m is TRUE and let Pn :“ pXn “ nq. Then P0 is TRUE by (9.12). If
now Pn is TRUE, then Xn “ n forces Xn R A and then Xn`1 “ Xn ` 1 “ n ` 1 by (9.12)
again. Thus Pn ñ Pn`1 is TRUE and the claim follows by induction.
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Now observe that the premise @m P A : Xm † m of Step 3 must be FALSE, for if it were
TRUE then its consequence @m P N : Xm “ m along with A ‰ H forces its negation, and
thus a contradiction. Hence we must have Dn P A : Xn “ n. But this n is then a lower
bound on A by Step 2 and it is also the infimum because any other lower bound m on A
definitely obeys m § n. ⇤

Lemma 9.8 There exists a function f : PpNq r tHu Ñ N such that

Domp f q “ PpNq r H ^

´
@A P PpNq r tHu : f pAq “ infpAq

¯
(9.15)

In particular, the Axiom of Choice holds for subsets of N.

Proof. We continue along with the objects and notation used in the previous proof. First
we use induction to prove

@m, n P N : m § n ^ Xm P A ñ Xm “ Xn (9.16)

Indeed, fix m P N and let Pn :“ m § n ^ Xm P A ñ Xm “ Xn. The premise for P0 is
TRUE only if m “ 0 “ n and then Xm “ Xn holds trivially. So P0 is TRUE. Next assume
Pn ^ m § n ` 1 ^ Xm P A to be TRUE. Then either m “ n ` 1, which implies Xm “ Xn`1
trivially, or m § n and then Pn ^ Xm P A implies Xm “ Xn. But this also gives Xn P A
and (9.12) forces Xn`1 “ Xn proving Xn`1 “ Xm. This shows Pn ñ Pn`1 and so (9.16)
follows by induction.

For each A P PpNq, define

SA :“ tm P A : Xm “ mu (9.17)

(Technically, SA1 is the value of a function A fiÑ SA at A1.) Lemma 9.7 shows SA ‰ H

whenever A ‰ H. Next we observe that this set is actually a singleton — i.e., a one-
point set. Indeed, if m, n P SA, then m “ Xm P A and n “ Xn P A hold and (9.16) gives
m “ Xm “ Xn “ n.

In order to define the desired function f out of this, let

R :“
!

pA, mq P pPpNq r tHuq ˆ N : m P SA

)
(9.18)

This is a relation on pPpNq r tHuq ˆ N which by fact that SA is a singleton for each
non-empty A Ñ N is (the graph of) a function f . (This is what spares us from having to
make a choice.) The fact that Domp f qPpNq r tHu and f pAq “ infpAq for all non-empty
A Ñ N now follow from Lemma 9.7. ⇤

In the situation when either the infimum or the supremum of a set belongs to this set,
we sometimes refer to them using different names:

Definition 9.9 If A is a set such that infpAq exists and infpAq P A we call infpAq the

minimum of A, with notation minpAq. Similarly, if A admits suppAq which belongs

to A, we call suppAq the maximum of A, with notation maxpAq.

The reader should interpret these properly in other contexts. For instance, the maxi-
mum of a function is the supremum of all function values that, in addition, is achieved at
some argument. This is not to be confused with the maximizer, which is the argument
(there could be more than one) where the function achieves its (unique) maximum.
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Returning back to the example of the ordered field of rationals, we note that some
bounded sets of rationals do admit supremum and infimum, e.g.,

supptx P Q : x2
§ 4uq “ 2 ^ infptx P Q : x2

† 4uq “ ´2. (9.19)

But there are also sets that fail this. For instance, the set Q admits no supremum and H

admits no infimum simply because the former admits no upper bound and the latter no
lower bound. However, even that is not the main obstruction:

Lemma 9.10 The set A :“ ta P Q : a † 0 _ a2
§ 2u admits an upper bound in Q yet no

supremum (in Q).

The proof needs the following trivial observation:

Lemma 9.11 (Archimedean property of Q) @a P Q : a ° 0 ñ pDn P N : an ° 1q

Proof. Let a P Q obey a ° 0. Then a “ p{q for some p, q P N r t0u. Let n :“ q ` 1. Then

anq “ ppq ` 1q “ pq ` p • q ` 1 ° q, (9.20)

where the inequality used that p • 1 and q • 0. Multiplying both sides by q´1, which is
positive and thus preserves the strict inequality, we get an ° 1 as desired. ⇤

We are now ready to give:
Proof of Lemma 9.10. Note that 1 P A and A Ñ ta P Q : a † 2u and so A is non-empty
and bounded from above by 2. Suppose for the sake of contradiction, that A admits a
supremum c P Q. Then 1 § c and c § 2. Noting that, for any natural n • 1 we have

´
c `

1
n

¯2
“ c2

`
2c
n

`
1
n2 § c2

`
5
n

(9.21)

the inequality c `
1
n ° c along with the fact that c is the supremum of A forces c `

1
n R A

implying pc `
1
n q

2
° 2 and thus c2

`
5
n ° 2. This rules out that c2

† 2 because that would
imply 5

n ° 2 ´ c2 for all natural n • 1, in contradiction with Lemma 9.11.
We thus have c2

• 2 which by Lemma 8.1 forces c2
° 2. But then

´
c ´

1
n

¯2
“ c2

´
2c
n

`
1
n2 • c2

´
4
n

(9.22)

shows that pc ´
1
n q

2
° 2 because the opposite inequality would give c2

´ 2 §
4
n for all

natural n • 1 again contradicting (in light of c2
° 2) Lemma 9.11. Since c ´

1
n • 0, we

conclude that c ´
1
n is an upper bound on A that is strictly smaller than c, contradicting

that c is the least upper bound. Hence, A admits no infimum in Q. ⇤
Of course, once

?

2 has been added to Q, the set A in the previous proof will admit
supremum with suppAq “

?

2. The absence of the infimum/supremum in Q is thus
reduced to the absence of a rational solution to x2

“ 2, or the existence of “hole” at the
point

?

2 in the rational line.
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