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8. ALGEBRAIC DEFICIENCIES OF RATIONALS

At first sight, the rationals appear to have most of the algebraic properties needed for
daily operations with numbers. Indeed, they allow for addition, multiplication as well
as the inverse operations of subtraction and division (by non-zero numbers). However,
once other natural operations are introduced, problems arise.

Recall that (natural) powers are defined in any ordered field pF, `, 0, ¨, 1, §q recur-
sively as

@b P F : b0 :“ 1 ^
`
@n P NF : bn`1 :“ b ¨ bn˘

(8.1)
With these in hand we can ask for solutions to polynomial equations such as

anxn
` an´1xn´1

` ¨ ¨ ¨ ` a1x ` a0 “ 0 (8.2)

for some natural n P NF and coefficients a0, . . . , an P F, where we began to adopt the
convention that the multiplication sign ¨ can be omitted when no confusion arises. The
simplest non-trivial case of (8.2) is arguably the quadratic equation

x2
“ a. (8.3)

By the Pythagorean theorem, a positive x solving this equation gives the length of the
hypothenuse in the right triangle whose legs-squared add up to a. (This remains relevant
to present day: Builders use the right triangle with sides of lengths 3, 4 and 5 to check
that walls meet in the corner at the right angle.)

Since the square of any number is non-negative (prove this from axioms of the field!),
(8.3) has no solution for a † 0. However, a solution clearly exists for some positive a P Q,
e.g., a “ 4 or a “

4
9 . Unfortunately, as was noted already by ancient Greeks, there are

also positive a P Q for which (8.3) admits no rational solution:

Lemma 8.1 (Euclid) @x P Q : x2
‰ 2

Proof. Suppose, on the way to a contradiction, that there is x P Q with x2
“ 2. Since x

is rational, we have x “ p̃{q̃ for some non-zero p̃, q̃ P Z (note that the square of zero is
zero). Note that by multiplying both p̃ and q̃ by ´1, we may achieve this with q̃ ° 0.
Now take q to be the smallest number in

 
q̃ P N r t0u : pDp̃ P Z : p̃ “ x ¨ q̃q

(
(8.4)

We checked a moment ago that this set is non-empty and so, by a homework problem,
the minimal number exists. Then set p :“ x ¨ q.

From x2
“ 2 we then get pp{qq

2
“ 2 and so p2

“ 2q2. Since the square of and odd
number is odd (prove this!), we get

p is even. (8.5)

But then there exists r P Z r t0u such that p “ 2r and so q2
“ 2r. Hence we also get

q is even. (8.6)

But this contradicts our assumption that q is a minimal element in (8.4) because q{2 is a
member of that set as well. Hence x2

“ 2 has no solution in Q. ⇤
The subsequent arguments in this section use the following definitions:
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Definition 8.2 Given non-zero integers m, n P Z, we say that “m divides n” with nota-

tion m|n if n{m P Z. In short,

m|n :“ pDk P Z : n “ k ¨ mq (8.7)

Given m, n P Z r t0u, the greatest common divisor gcdpm, nq of m and n is the largest

natural that divides both m and n. For each p P N we also define

p is a prime :“ p P N r t0, 1u ^
`
@q P N r t0, 1u : q|p ñ q “ p

˘
(8.8)

We will show that gcdpm, nq exists for all non-zero integers m and n later in this course
and/or homework assignment.

Lemma 8.1 readily generalizes to xn
“ p having no rational solution for any p P N

prime and any n P N different from 0 and 1. The mathematicians of middle ages (and
even ancient Greeks, who knew of the right triangle with legs of unit length and the
hypothenuse whose length is not a rational number) were quite aware of this problem
and so they invented the notion of a radical. The idea is to introduce a new element
into the existing number system that is defined as a solution of the polynomial equation
xn

“ a for some a in the number system.
For instance,

?

2 is defined to be the positive number that solves the equation x2
“ 2,

while 5
?

7 is the number that solves x5
“ 7. The process can be iterated, which means that

once
?

2 is already in our number system, we define
a

2 `

?

2 to be a positive solution
to the equation x2

“ 2 `

?

2 which then resolves into px2
´ 2q

2
“ 2 and thus

x4
´ 4x2

` 2 “ 0. (8.9)

A natural question is then: Which expressions involving radicals are rational and which
are not? Some insight into this question is offered by:

Theorem 8.3 (Rational root test) Suppose x P Q solves

anxn
` an´1xn´1

` ¨ ¨ ¨ ` a1x ` a0 “ 0, (8.10)

where a0, . . . , an P Z and a0, an ‰ 0. Then

Dp, q P Z r t0u : x “
p
q

^ gcdpp, qq “ 1 ^ p|a0 ^ q|an (8.11)

In words, x can be written as the ratio p
q of two non-zero integers with no non-trivial common

divisors such that p divides a0 and q divides an.

Proof. Write x as p{q where p, q P Z with q ° 0 and gcdpp, qq “ 1. (Again, this is achieved
by taking a representation with smallest positive q.) Since a0 ‰ 0 we have x ‰ 0 and
so p ‰ 0. Substituting x “ p{q into (8.10) and multiplying the whole equation by qn then
yields

an pn
“ ´q

“
an´1 pn´1

` an´2 pn´2q ` ¨ ¨ ¨ ` a1 pqn´2
` a0qn´1‰

(8.12)
The square bracket is an integer and so q divides an pn. But the fact that gcdpp, qq “ 1
then forces q|an as claimed. The proof that p|a0 is similar and thus omitted. ⇤

To demonstrate this on an example, the theorem implies that any rational solution
to (8.9) is an integer that divides 2, which leaves ´2, ´1, 1, 2 as only possible candidates.
As none of these solves (8.9), we conclude

a
2 `

?

2 R Q.
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However, not all expressions involving radicals are necessarily non-rational: Obvi-
ously,

?

4 is rational but so is
a

7 ` 2
?

3 ´

?

3 because
b

7 ` 2
?

3 ´

?

3 “

b
p2 `

?

3q2 ´

?

3 “ 2 `

?

3 ´

?

3 “ 2. (8.13)

While Theorem 8.3 is typically used to rule out rational roots, it in fact outputs a finite set
of numbers as possible candidates for rational roots and so, if one of these solves (8.10),
it gives us a rational root if one exists. However, using this for expressions as in (8.13) is
not practical as the main point there is to show that the expression simplifies.

A formal way to add the radical
?

2 to the field of rationals is by introducing the set
 

a ` b
?

2 : a, b P Q
(

(8.14)

The addition on these is defined canonically

pa ` b
?

2q ` pã ` b̃
?

2q :“ pa ` ãq ` pb ` b̃q

?

2, (8.15)

while multiplication is defined as

pa ` b
?

2q ¨ pã ` b̃
?

2q :“ pa ¨ ã ` 2 ¨ b ¨ b̃
˘

` pa ¨ b̃ ` ã ¨ bq

?

2. (8.16)

Writing 0 ` 0
?

2 for the zero element and 1 ` 0
?

2 for the unit element, we then check
that the inverse to a ` b

?

2 under addition is

´pa ` b
?

2q “ ´a ` p´bq

?

2 (8.17)

while that under multiplication is

pa ` b
?

2q
´1

“
a

a2 ´ 2b2 ´
b

a2 ´ 2b2

?

2 (8.18)

where we noted that @a, b P Q : a2
´ 2b2

‰ 0 by Lemma 8.1. For convenience of
expression, we also wrote rationals as fractions instead of invoking inverse elements.
(Lemma 8.1 also guarantees that the representation of any element of (8.14) using two
rationals a and b is unique.) We thus conclude that (8.14) is a field containing Q. With
some additional work, we can even give (8.14) the structure of an ordered field.

Formally, the field (8.14) can be regarded as a linear vector space over the field Q with
basis t1,

?

2u. Thanks to (8.14) being also a field, the procedure can thus be iterated and
other radicals gradually added. This leads to the formal description of a solution of
polynomial equations “in radicals.”

Definition 8.4 Let Ppxq be a polynomial in x with rational coefficients. We say that

the equation Ppxq “ 0 admits a solution in radicals if there exists m P N and fields

F0, F1, . . . , Fm such that:

(1) F0 “ Q

(2) @i “ 0, . . . , m ´ 1 Dz P Fi`1 Da P Fi Dk P N :

zk
“ a ^ Fi`1 “ tb0 ` b1z ` ¨ ¨ ¨ ` bk´1zk´1 : b0, . . . , bk´1 P Fiu (8.19)

(3) Dx P Fm : Ppxq “ 0
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The reason why all powers less than k-th are listed on the right of (8.19) is that only
then the set is closed under multiplication. Additional conditions are needed to ensure
that the set in (8.19) is a field (e.g., if zj

P Fi for some j † k then we may have b0 ` b1z `

¨ ¨ ¨ ` bk´1zk´1
“ 0 without all b0, . . . , bk´1 vanishing) but the statement does not care

about these as we assume that Fi`1 is a field to begin with.
Translating Definition 8.4 into more laymen terms, we are trying to find a sequence of

symbols of the form k
?

a — that is, solutions to equations of the kind xk
“ a — where a

is expressed as a polynomial in all symbols obtained thus far, so that, when this process
terminates, we are able to write a solution of the polynomial equation Ppxq “ 0 of inter-
est. Or, even more simply, a solution in radicals is that which uses only a finite number
of additions, multiplications (which includes subtractions and divisions, of course) and
taking roots of any degree.

Besides the quadratic equation (the case n “ 2 in (8.10)), a solution in radicals turns
out to be possible for the cubic equation (the case n “ 3 in (8.10)) and the quartic equation
(the case n “ 4 in (8.10)) thanks to the classical solutions due to L. Ferrari (quartic equa-
tion, solved in 1540) and G. Cardano (cubic equation, solved in 1545). Unfortunately, as
shown by P. Ruffini in 1799 (in a somewhat controversial 100-page paper) and N.H. Abel
in 1824 (in a 6-page paper), this fails for some quintic equations, e.g.,

x5
´ x ´ 1 “ 0. (8.20)

(Being a quintic, this equation does have at least one real root.) Soon after this (in 1830)
E. Galois developed tools to determine whether a given polynomial equation admits a
solution in radicals, thus founding what is now called Galois theory.

With the process of gradually adding radicals to rationals failing to describe the so-
lutions to even some basic polynomial equations, we may try to take a more abstract
approach and consider simply all numbers that (quite loosely) solve some polynomial
equation (8.10) for some non-trivial integer coefficients. (We will need to define the reals
first to make this precise.) Such numbers are called algebraic. Unfortunately, as it turns
out, even these are not sufficient to give us important numbers such as p, or the Euler
number e that are fundamental for analysis. It follows (and this is the punchline of this
section) that we will have to approach the reals using different means than just algebra.
This is what we will do next.
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