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7. ORDERED FIELDS

In this lecture we define the notion of a field and ordered field, which will allow us to
give an axiomatic definition of rationals. We then show that rationals are unique up to a
bijection that preserves the ordered field structure which we will later to (similarly) ax-
iomatize the reals and prove their uniqueness. Such statements are necessary to ensure
that there is only one real analysis one can build out of Zermelo’s axioms.

We start by a definition that is standard in algebra:

Definition 7.1 (A field) A set F with binary operations ` and ¨ and two distinct distin-

guished elements 0 and 1 is a field if

(F1) the operations of addition and multiplication obey the commutative and associa-

tive laws (each of them separately) as well as the distributive law,

(F2) (Zero element) @a P F : 0 ` a “ a ^ 0 ¨ a “ 0,

(F3) (Unit element) @a P F : 1 ¨ a “ a,

(F4) (Additive inverse) @a P F Dp´aq P F : a ` p´aq “ 0,

(F5) (Multiplicative inverse) @a P F r t0u Da´1
P F : a ¨ a´1

“ 1.

We will write pF, `, 0, ¨, 1q to denote the field F along with all its important attributes.

One can check that, in every field, the following holds:
‚ The zero and unit elements are unique. Indeed, assuming 0 and 01 are both zero

elements, then 0 “ 0 ` 01
“ 01. The proof for the unit element is similar.

‚ The additive and multiplicative inverses are unique. Indeed, focusing on the mul-
tiplicative inverse, if ã´1 and a´1 are both inverses to a ‰ 0, then the associative
law for multiplication shows ã´1

“ ã´1
¨ pa ¨ a´1

q “ pã´1
¨ aq ¨ a´1

“ a´1.
‚ The operations of addition and multiplication by non-zero number are injective.

Indeed, we have

@a, b, c P F : a ` b “ a ` c ñ b “ c (7.1)

and
@a, b, c P F : pa ‰ 0 ^ a ¨ b “ a ¨ cq ñ b “ c (7.2)

‚ The product of any two non-zero elements is non-zero,

@a, b P F : pa ‰ 0 ^ b ‰ 0q ñ a ¨ b “ 0 (7.3)

‚ For all a, b P F we have p´aq ¨ b “ ´pa ¨ bq “ a ¨ p´bq and thus p´aq ¨ p´aq “ a ¨ a.
Similarly, we infer p´aq

´1
“ ´a´1 for all a ‰ 0.

Theorem 6.6 shows that Q endowed with operations (6.16–6.17) is a field. There are
other natural examples of fields. For instance, there are many finite fields. (We have
yet to define the term “finite” but in these examples this will be clear intuitively.) The
simplest non-trivial example is F2 :“ t0, 1u, where addition is defined by

0 ` 0 :“ 0, 0 ` 1 “ 1 ` 0 :“ 1, 1 ` 1 :“ 0 (7.4)

and multiplication by

0 ¨ 0 :“ 0, 0 ¨ 1 “ 1 ¨ 0 :“ 0, 1 ¨ 1 :“ 1, (7.5)

In the absence of other elements, F2 is clearly a field. (Note that, in this field, ´1 “ 1.)
This example generalizes for any p prime to Fp :“ Z{ppZq which can be identified with
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the set t0, 1, . . . , p ´ 1u and the operations of addition and multiplication as in Z except
taken modulo p. Note that Fp is a field only if p is a prime; indeed, otherwise there are
two non-zero elements — namely, the divisors of p — that multiply to zero.

The need to rule out the example (7.4–7.5) as well as Fp for p prime from consideration
(as good sets of numbers for real analysis) motivates us restrict the concept of a field
further by requiring the existence of an ordering relation:

Definition 7.2 (Ordered field) We say that a field pF, `, 0, ¨, 1q is an ordered field if F
admits a binary relation § that

(O1) is a total ordering, i.e., is reflexive, antisymmetric and transitive and is connex in

the sense that @a, b P F : a § b _ b § a,

(O2) is preserved by addition, i.e.,

@a, b, c P F : a § b ñ a ` c § b ` c (7.6)

(O3) is preserved by multiplication by non-negative numbers, i.e.,

@a, b, c P F :
`
a § b ^ 0 § c

˘
ñ a ¨ c § b ¨ c. (7.7)

We will write pF, `, 0, ¨, 1, §q for an ordered field with the ordering relation §.

The properties O1-O3 directly imply:

Lemma 7.3 0 § 1 holds in any ordered field pF, `, 0, ¨, 1, §q.

Proof. Assume, on the way to a contradiction, that 1 † 0. Then (O2) shows 0 † ´1 and,
since ´1 is non-negative, (O3) gives 0 “ 0 ¨ p´1q § p´1q ¨ p´1q “ 1, in contradiction with
the assumption. Hence 0 § 1 by the fact that § is a total order; see (O1). ⇤

We now list further properties which the reader will find completely standard but
which, to get a fully rigorous treatment, now have to be verified from the definition of
an ordered field:

Lemma 7.4 Let pF, `, 0, ¨, 1, §q be an ordered field. Then
(1) @a, b P F : 0 § b ô a § a ` b
(2) @a, b P F : a § b ñ ´b § ´a
(3) @a, b P F : p0 † a ^ a § bq ñ b´1

§ a´1

Proof. Left to a homework exercise. ⇤
In order to get to the axiomatic definition of the rationals, we make the following

important observation:

Lemma 7.5 Let pF, `, 0, ¨, 1, §q be an ordered field. Set

NF :“
£ 

A Ñ F : 0 P A ^ p@x P A : x ` 1 P Aq
(

(7.8)

and let SFpxq :“ x ` 1. Then pNF, 0, SFq is a system of naturals.

Proof. We need to verify the Peano axioms P1-P5. First note that the set A :“ F con-
tributes to the intersection, which is thus non-empty. It follows that NF is a set which,
since every A in (7.8) contains 0, obeys 0 P NF, thus proving P1. Since every set on the
rigth of (7.8) is closed under SF, we also have that SF is a map NF Ñ NF, proving P2.
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The map SF is injective (even on F) because x ` 1 “ y ` 1 implies x “ y by (7.1), prov-
ing P4. As to the range of SF omitting zero, here we note that the set tx P F : 0 § xu

of non-negative elements contributes on the right of (7.8). Since 0 † 1 by Lemma 7.3
and the assumption that 0 ‰ 1 (for otherwise F would be just a one-element set) forces
0 † x ` 1 for each x P NF and thus 0 R SFpNFq, proving P3.

It remains to prove the Induction Axiom P5. For this, let A Ñ NF such that 0 P A
and SFpAq Ñ A. But then A appears among the sets on the right of (7.8) and so NF Ñ A.
Hence A “ NF proving P5 as well. ⇤

We will refer to NF as the naturals of F. With this concept in hand, we are able to
axiomatize the rationals as well:

Definition 7.6 A system of the rationals is an ordered field pF, `, 0, ¨, 1, §q such that

@x P F Dm, n, r P NF : r ‰ 0 ^ x “ r´1
¨ pm ´ nq (7.9)

where NF are the naturals of F.

As we have shown above, there is at least one systems of rationals. (The ordering
relation is defined in (6.22). Checking that these satisfy O1-O3 in Definition 7.2 is left to
the reader.) It remains to prove that the rationals are, in fact, unique:

Theorem 7.7 (Uniqueness of the rationals) Let pF, `, 0, ¨, 1, §q and prF, r̀ , r0,r̈, r1, r§q be two
systems of the rationals. Then there exists a bijection f : F Ñ rF such that

(1) @a, b P F : fpa ` bq “ fpaq r̀ fpbq,
(2) @a, b P F : fpa ¨ bq “ fpaq r̈ fpbq

(3) fp0q “ r0 and fp1q “ r1,
(4) @a, b P F : a § b ñ fpaq r§ fpbq.

In particular, a system of the rationals is unique up to an isomorphism.

Proof (sketch). We only give the main steps leaving the details to the reader. The unique-
ness of the naturals (see Theorem 4.7) and Lemma 7.5 imply the existence of a bijec-
tion f : NF Ñ NrF with

fp0q “ r0 ^ f ˝ SF “ SrF ˝ f (7.10)

In particular, we have

fp1q “ f ˝ SFp0q “ SrF ˝ fp0q “ SrFpr0q “ r1 (7.11)

proving (3) above. In light of (7.10), f takes the operation of addition ` to r̀ ; i.e.,

@m, n P NF : fpm ` nq “ fpmq r̀ fpnq (7.12)

We then check that the same applies to multiplication,

@m, n P NF : fpm ¨ nq “ fpmq r̈ fpnq (7.13)

(Both of these statements are readily proved by induction.)
Next we extend f to F as follows: If x “ r´1

¨ pm ´ nq for some m, n, r P NF with r ‰ 0,
then we set

fpxq :“ fprq
´1 r̈

`
fpmq r̀ p´fpnqq

˘
. (7.14)

Preliminary version (subject to change anytime!) Typeset: January 30, 2023



35 MATH 131AH notes

Using (7.12–7.13) we now verify that the right-hand side is the same regardless of which
naturals m, n, r are used to represent x, and so f thus defines a function F Ñ rF. A similar
argument proves that the map is injective; using that f is bijective and thus invertible on
the naturals then shows that f is also onto. This gives properites (1-3) above. In order to
prove (4), by additivity of f it suffices to focus on the cxase a “ 0. Here we note that, for
x • 0, we can take m • 0, r ° 0 and n “ 0 in (7.14). The fact that property (4) holds for
the naturals then implies fpxq • 0 as desired. ⇤

Having proved the uniqueness of the rationals, a natural question whether there are
in fact other ordered fields than rationals. We will answer this in the next two lectures.
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