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5. ARITHMETIC OF THE NATURALS

In order to bring the abstract treatment of the naturals closer to our intuition, we will
now define the basic operations of addition, multiplication, powers etc on the naturals and
prove the standard relations between them.

5.1 Addition.

We will spend most of the time on addition as other operations are handled analogously.
Pick m P N and invoke the recursion principle in Theorem 4.5 for the choice E :“ N,
a :“ m and h :“ S to define tXn : n P Nu such that

X0 “ m and @n P N : XSpnq “ SpXnq. (5.1)

Then we denote
m ` n :“ Xn. (5.2)

As consequence of the construction (5.1) we get a symbol m ` n satisfying
(1) @m P N : m ` 0 “ m, and
(2) @m, n P N : m ` Spnq “ Spm ` nq.

From these observation we now derive further facts about addition relying, predomi-
nantly, on the Induction Principle.

We will now prove that the operation m, n fiÑ m ` n is commutative. We begin by:

Lemma 5.1 @m P N : 0 ` m “ m

Proof. Let Pm denote the logical proposition 0 ` m “ m. Then P0 is TRUE because (1)
above implies 0 ` 0 “ 0. Next assume Pm holds for some m P N. Then

0 ` Spmq
p2q
“ Sp0 ` mq

Pm
“ Spmq. (5.3)

It follows that Pm ñ PSpmq. By the Induction Lemma, tm P N : 0 ` m “ mu “ N. ⇤
Next we need:

Lemma 5.2 @m, n P N : m ` Spnq “ Spmq ` n

Proof. Fix m P N and let Pn be the statement m ` Spnq “ Spmq ` n. Since

m ` Sp0q
p2q
“ Spm ` 0q

p1q
“ Spmq

p1q
“ Spnq ` 0 (5.4)

we get that P0 is TRUE. Next assume that Pn is TRUE for some n P N. Then

m ` SpSpnqq
p2q
“ Spm ` Spnqq

Pn
“ SpSpmq ` nq

p2q
“ Spmq ` Spnq (5.5)

implying PSpnq. Hence, @n P N : Pn ñ PSpnq and, by the Induction lemma, tn P N : m `

Spnq “ Spmq ` nu “ N. As this holds for all m P N, we are done. ⇤
Hence we finally conclude:

Proposition 5.3 (Commutativity of addition)

@m, n P N : m ` n “ n ` m (5.6)
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Proof. Let Qm be the statement @n P N : m ` n “ n ` m. Then Q0 is TRUE by (1) and
Lemma 5.1. Assume now that Qm is TRUE. Then for any n P N,

Spmq ` n Lemma 5.2
“ m ` Spnq

p2q
“ Spm ` nq

Qm
“ Spn ` mq

p2q
“ n ` Spmq. (5.7)

It follows that Qm ñ QSpmq. By induction, tm P N : Qmu “ N. ⇤
Similarly we also prove that the operation m, n fiÑ m ` n is associative:

Proposition 5.4 (Associativity of addition)

@m, n, k P N : m ` pn ` kq “ pm ` nq ` k (5.8)

Proof. Left as a homework exercise. Commutativity should not be required. ⇤

5.2 Ordering of the naturals.

A useful property of addition is that it acts injectively:

Lemma 5.5 @m, n, ` P N : m ` n “ m ` ` ñ n “ `

Proof. Let Pm be the statement @n, ` P N : m ` n “ m ` ` ñ n “ `. By (1) and Lemma 5.1,
P0 is TRUE. Now assume Pm is TRUE for some m P N. For n, ` P N are such that

Spmq ` n “ Spmq ` ` (5.9)

then Lemma 5.2 implies Spmq ` n “ m ` Spnq and Spmq ` ` “ ` ` Spnq

m ` Spnq
Lemma 5.2

“ Spmq ` n “ Spmq ` ` Lemma 5.2
“ m ` Sp`q (5.10)

thus implying Spnq “ Sp`q via Pm. But S is injective by P4 and so we get n “ `. Hence
Pm ñ PSpmq and, by induction, Pm is TRUE for all m P N. ⇤

This property implies that, given m P N, for each n P N the equation n “ m ` s has
at most one solution for s in N. We can formally describe the pairs pm, nq P N ˆ N for
which the solution exists by way of the less than or equal relation § defined by

m § n ô Ds P N : n “ m ` s. (5.11)

Here are some properties of this relation:

Lemma 5.6 The relation § is reflexive, antisymmetric and transitive.

Proof. Reflexivity is immediate from (1) and transitivity follows from the associativity
of addition. So the main point to check is antisymmetry. For that assume m, n P N are
such that m § n ^ n § m. Then there are r, s P N such that m “ n ` s ^ n “ m ` r.
Putting these together and invoking the associativity of addition, we get n “ n ` ps ` rq.
Lemma 5.5 and (1) then force s ` r “ 0. By P3 and (2) above, r cannot be a successor and
so r “ 0. Then also s “ 0 whereby we conclude

@m, n P N : m § n ^ n § m ñ m “ n (5.12)

meaning that § is antisymmetric. ⇤
It easy to check that the following properties of § are true:
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Lemma 5.7 We have
@n P N : 0 § n (5.13)

@n P N : n § Spnq (5.14)
and

@m, n P N : m § n ñ Spmq § Spnq (5.15)

Proof. Left to a homework exercise. ⇤
An important point of the relation § is that it is connex, meaning that every pair of

naturals are ordered one or the other way. This is usually phrased by saying that § is a
total ordering in the following sense:

Lemma 5.8 (Total-ordering of N)

@m, n P N : m § n _ n § m (5.16)

Proof. Let Pm be the statement @n P N : m § n _ n § m. Then P0 is TRUE by (5.13) so
assume that Pm holds for some m P N and let n P N. If n § m or n “ m then (5.14)
and transitivity imply n § Spmq. In the opposite case we must have m § n (as Pm was
assumed to hold) and m ‰ n. The definition (5.11) and Lemma 4.2 then show existence
of an r P N such that

n “ m ` Sprq
Lemma 5.2

“ Spmq ` r (5.17)
proving Spmq § n and thus also Pm ñ PSpmq. Hence, Pm is TRUE for all m P N. ⇤

Note that we can re-state Lemma 5.8 as saying that at least one of n “ m ` r or m “

n ` r has a solution for r in the naturals.

5.3 Multiplication, powers, factorial.

Moving to a definition of multiplication, pick m P N and use Theorem 4.5 with the
choices E :“ N, hprq :“ r ` m and a :“ 0 to construct tXn : n P Nu such that

X0 “ 0 ^ @n P N : XSpnq “ Xn ` m. (5.18)

We will write n ¨ m for Xn and thus get

0 ¨ m “ 0 ^ @n P N : Spnq ¨ m “ n ¨ m ` m (5.19)

We also define the unity in N by
1 :“ Sp0q (5.20)

and observe that
Spnq “ Spn ` 0q “ n ` Sp0q “ n ` 1 (5.21)

which will eventually allow us to drop the notation using the successor function and
write it as “plus one” instead. The following properties are then checked:

Proposition 5.9 (Properties of multiplication on N) We have:
(1) (Commutative law) @m, n P N : m ¨ n “ n ¨ m,
(2) (Associative law) @m, n, k P N : pm ¨ nq ¨ k “ m ¨ pn ¨ kq,
(3) (Distributive law) @m, n, k P N : pn ` kq ¨ m “ pn ¨ mq ` pk ¨ mq

(4) (Zero and unity) @m P N : 0 ¨ m “ 0 ^ 1 ¨ m “ m
(5) (Injectivity) @m, n, k P N : k ‰ 0 ^ k ¨ m “ k ¨ n ñ m “ n
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Proof. A somewhat tedious but doable exercise that we leave to the reader. ⇤
Multiplication also behaves nicely around the total ordering relation:

Lemma 5.10 We have

@m, n, r P N : m § n ñ r ¨ m § r ¨ n (5.22)

Proof. Left to homework exercise. ⇤
With multiplication in place, we can now define natural powers. Here we pick m P N

and use Theorem 4.5 to construct tmn : n P Nu satisfying

m0
“ 1 ^ @n P N : mSpnq

“ m ¨ mn. (5.23)

Note that this entails m0
“ 1 (even for m “ 0) while 0n

“ 0 for n ‰ 0. Similarly, 1n
“ 1

for all n P N. The following properties will again be of relevance:

Lemma 5.11 (Powers) Let m P N r t0u. Then
(1) @r, s P N : mr`s

“ mr
¨ ms,

(2) @r, s P N : m r¨s
“ pmr

q
s.

Proof. Proved readily by induction. ⇤
A related construction permits us to construct the factorial of n, with notation n!, by
imposing

0! “ 1 and @n P N : Spnq! “ Spnq ¨ n! (5.24)
By (5.21), the statement in the second part can be written as pn ` 1q! “ pn ` 1q ¨ n!, which
is the recursive form of the informal expression n! “ n ¨ pn ´ 1q ¨ ¨ ¨ ¨ ¨ 1.

Factorials appear frequently in combinatorial arguments (indeed, n! is the number
of permutations of n elements) but also appears in analytic expressions (thanks to, for
instance, Taylor’s theorem).
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