5. ARITHMETIC OF THE NATURALS

In order to bring the abstract treatment of the naturals closer to our intuition, we will now define the basic operations of addition, multiplication, powers etc on the naturals and prove the standard relations between them.

5.1 Addition.

We will spend most of the time on addition as other operations are handled analogously. Pick $m \in \mathbb{N}$ and invoke the recursion principle in Theorem 4.5 for the choice $E:=\mathbb{N}$, $a:=m$ and $\mathfrak{h}:=S$ to define $\left\{X_{n}: n \in \mathbb{N}\right\}$ such that

$$
\begin{equation*}
X_{0}=m \quad \text { and } \quad \forall n \in \mathbb{N}: X_{S(n)}=S\left(X_{n}\right) \tag{5.1}
\end{equation*}
$$

Then we denote

$$
\begin{equation*}
m+n:=X_{n} . \tag{5.2}
\end{equation*}
$$

As consequence of the construction (5.1) we get a symbol $m+n$ satisfying
(1) $\forall m \in \mathbb{N}: m+0=m$, and
(2) $\forall m, n \in \mathbb{N}: m+S(n)=S(m+n)$.

From these observation we now derive further facts about addition relying, predominantly, on the Induction Principle.

We will now prove that the operation $m, n \mapsto m+n$ is commutative. We begin by:
Lemma $5.1 \quad \forall m \in \mathbb{N}: 0+m=m$
Proof. Let P_{m} denote the logical proposition $0+m=m$. Then P_{0} is TRUE because (1) above implies $0+0=0$. Next assume P_{m} holds for some $m \in \mathbb{N}$. Then

$$
\begin{equation*}
0+S(m) \stackrel{(2)}{=} S(0+m) \stackrel{P_{m}}{=} S(m) \tag{5.3}
\end{equation*}
$$

It follows that $P_{m} \Rightarrow P_{S(m)}$. By the Induction Lemma, $\{m \in \mathbb{N}: 0+m=m\}=\mathbb{N}$.
Next we need:
Lemma $5.2 \forall m, n \in \mathbb{N}: m+S(n)=S(m)+n$
Proof. Fix $m \in \mathbb{N}$ and let P_{n} be the statement $m+S(n)=S(m)+n$. Since

$$
\begin{equation*}
m+S(0) \stackrel{(2)}{=} S(m+0) \stackrel{(1)}{=} S(m) \stackrel{(1)}{=} S(n)+0 \tag{5.4}
\end{equation*}
$$

we get that P_{0} is TRUE. Next assume that P_{n} is TRUE for some $n \in \mathbb{N}$. Then

$$
\begin{equation*}
m+S(S(n)) \stackrel{(2)}{=} S(m+S(n)) \stackrel{P_{n}}{=} S(S(m)+n) \stackrel{(2)}{=} S(m)+S(n) \tag{5.5}
\end{equation*}
$$

implying $P_{S(n)}$. Hence, $\forall n \in \mathbb{N}: P_{n} \Rightarrow P_{S(n)}$ and, by the Induction lemma, $\{n \in \mathbb{N}: m+$ $S(n)=S(m)+n\}=\mathbb{N}$. As this holds for all $m \in \mathbb{N}$, we are done.

Hence we finally conclude:
Proposition 5.3 (Commutativity of addition)

$$
\begin{equation*}
\forall m, n \in \mathbb{N}: m+n=n+m \tag{5.6}
\end{equation*}
$$

Proof. Let Q_{m} be the statement $\forall n \in \mathbb{N}: m+n=n+m$. Then Q_{0} is TRUE by (1) and Lemma 5.1. Assume now that Q_{m} is TRUE. Then for any $n \in \mathbb{N}$,

$$
\begin{equation*}
S(m)+n \stackrel{\text { Lemma }}{=} 5.2 m+S(n) \stackrel{(2)}{=} S(m+n) \stackrel{Q_{m}}{=} S(n+m) \stackrel{(2)}{=} n+S(m) . \tag{5.7}
\end{equation*}
$$

It follows that $Q_{m} \Rightarrow Q_{S(m)}$. By induction, $\left\{m \in \mathbb{N}: Q_{m}\right\}=\mathbb{N}$.
Similarly we also prove that the operation $m, n \mapsto m+n$ is associative:
Proposition 5.4 (Associativity of addition)

$$
\begin{equation*}
\forall m, n, k \in \mathbb{N}: m+(n+k)=(m+n)+k \tag{5.8}
\end{equation*}
$$

Proof. Left as a homework exercise. Commutativity should not be required.

5.2 Ordering of the naturals.

A useful property of addition is that it acts injectively:
Lemma $5.5 \forall m, n, \ell \in \mathbb{N}: m+n=m+\ell \Rightarrow n=\ell$
Proof. Let P_{m} be the statement $\forall n, \ell \in \mathbb{N}: m+n=m+\ell \Rightarrow n=\ell$. By (1) and Lemma 5.1, P_{0} is TRUE. Now assume P_{m} is TRUE for some $m \in \mathbb{N}$. For $n, \ell \in \mathbb{N}$ are such that

$$
\begin{equation*}
S(m)+n=S(m)+\ell \tag{5.9}
\end{equation*}
$$

then Lemma 5.2 implies $S(m)+n=m+S(n)$ and $S(m)+\ell=\ell+S(n)$

$$
\begin{equation*}
m+S(n) \stackrel{\text { Lemma } 5.2}{=} S(m)+n=S(m)+\ell \stackrel{\text { Lemma } 5.2}{=} m+S(\ell) \tag{5.10}
\end{equation*}
$$

thus implying $S(n)=S(\ell)$ via P_{m}. But S is injective by P4 and so we get $n=\ell$. Hence $P_{m} \Rightarrow P_{S(m)}$ and, by induction, P_{m} is TRUE for all $m \in \mathbb{N}$.

This property implies that, given $m \in \mathbb{N}$, for each $n \in \mathbb{N}$ the equation $n=m+s$ has at most one solution for s in \mathbb{N}. We can formally describe the pairs $(m, n) \in \mathbb{N} \times \mathbb{N}$ for which the solution exists by way of the less than or equal relation \leqslant defined by

$$
\begin{equation*}
m \leqslant n \quad \Leftrightarrow \quad \exists s \in \mathbb{N}: n=m+s \tag{5.11}
\end{equation*}
$$

Here are some properties of this relation:
Lemma 5.6 The relation \leqslant is reflexive, antisymmetric and transitive.
Proof. Reflexivity is immediate from (1) and transitivity follows from the associativity of addition. So the main point to check is antisymmetry. For that assume $m, n \in \mathbb{N}$ are such that $m \leqslant n \wedge n \leqslant m$. Then there are $r, s \in \mathbb{N}$ such that $m=n+s \wedge n=m+r$. Putting these together and invoking the associativity of addition, we get $n=n+(s+r)$. Lemma 5.5 and (1) then force $s+r=0$. By P3 and (2) above, r cannot be a successor and so $r=0$. Then also $s=0$ whereby we conclude

$$
\begin{equation*}
\forall m, n \in \mathbb{N}: m \leqslant n \wedge n \leqslant m \Rightarrow m=n \tag{5.12}
\end{equation*}
$$

meaning that \leqslant is antisymmetric.
It easy to check that the following properties of \leqslant are true:

Lemma 5.7 We have

$$
\begin{gather*}
\forall n \in \mathbb{N}: \quad 0 \leqslant n \tag{5.13}\\
\forall n \in \mathbb{N}: n \leqslant S(n) \tag{5.14}
\end{gather*}
$$

and

$$
\begin{equation*}
\forall m, n \in \mathbb{N}: m \leqslant n \Rightarrow S(m) \leqslant S(n) \tag{5.15}
\end{equation*}
$$

Proof. Left to a homework exercise.
An important point of the relation \leqslant is that it is connex, meaning that every pair of naturals are ordered one or the other way. This is usually phrased by saying that \leqslant is a total ordering in the following sense:

Lemma 5.8 (Total-ordering of \mathbb{N})

$$
\begin{equation*}
\forall m, n \in \mathbb{N}: \quad m \leqslant n \vee n \leqslant m \tag{5.16}
\end{equation*}
$$

Proof. Let P_{m} be the statement $\forall n \in \mathbb{N}: m \leqslant n \vee n \leqslant m$. Then P_{0} is TRUE by (5.13) so assume that P_{m} holds for some $m \in \mathbb{N}$ and let $n \in \mathbb{N}$. If $n \leqslant m$ or $n=m$ then (5.14) and transitivity imply $n \leqslant S(m)$. In the opposite case we must have $m \leqslant n$ (as P_{m} was assumed to hold) and $m \neq n$. The definition (5.11) and Lemma 4.2 then show existence of an $r \in \mathbb{N}$ such that

$$
\begin{equation*}
n=m+S(r) \stackrel{\text { Lemma } 5.2}{=} S(m)+r \tag{5.17}
\end{equation*}
$$

proving $S(m) \leqslant n$ and thus also $P_{m} \Rightarrow P_{S(m)}$. Hence, P_{m} is TRUE for all $m \in \mathbb{N}$.
Note that we can re-state Lemma 5.8 as saying that at least one of $n=m+r$ or $m=$ $n+r$ has a solution for r in the naturals.

5.3 Multiplication, powers, factorial.

Moving to a definition of multiplication, pick $m \in \mathbb{N}$ and use Theorem 4.5 with the choices $E:=\mathbb{N}, \mathfrak{h}(r):=r+m$ and $a:=0$ to construct $\left\{X_{n}: n \in \mathbb{N}\right\}$ such that

$$
\begin{equation*}
X_{0}=0 \quad \wedge \quad \forall n \in \mathbb{N}: X_{S(n)}=X_{n}+m \tag{5.18}
\end{equation*}
$$

We will write $n \cdot m$ for X_{n} and thus get

$$
\begin{equation*}
0 \cdot m=0 \quad \wedge \quad \forall n \in \mathbb{N}: S(n) \cdot m=n \cdot m+m \tag{5.19}
\end{equation*}
$$

We also define the unity in \mathbb{N} by

$$
\begin{equation*}
1:=S(0) \tag{5.20}
\end{equation*}
$$

and observe that

$$
\begin{equation*}
S(n)=S(n+0)=n+S(0)=n+1 \tag{5.21}
\end{equation*}
$$

which will eventually allow us to drop the notation using the successor function and write it as "plus one" instead. The following properties are then checked:
Proposition 5.9 (Properties of multiplication on \mathbb{N}) We have:
(1) (Commutative law) $\forall m, n \in \mathbb{N}: m \cdot n=n \cdot m$,
(2) (Associative law) $\forall m, n, k \in \mathbb{N}:(m \cdot n) \cdot k=m \cdot(n \cdot k)$,
(3) (Distributive law) $\forall m, n, k \in \mathbb{N}:(n+k) \cdot m=(n \cdot m)+(k \cdot m)$
(4) (Zero and unity) $\forall m \in \mathbb{N}: 0 \cdot m=0 \wedge 1 \cdot m=m$
(5) (Injectivity) $\forall m, n, k \in \mathbb{N}: k \neq 0 \wedge k \cdot m=k \cdot n \Rightarrow m=n$

Proof. A somewhat tedious but doable exercise that we leave to the reader.
Multiplication also behaves nicely around the total ordering relation:
Lemma 5.10 We have

$$
\begin{equation*}
\forall m, n, r \in \mathbb{N}: m \leqslant n \Rightarrow r \cdot m \leqslant r \cdot n \tag{5.22}
\end{equation*}
$$

Proof. Left to homework exercise.
With multiplication in place, we can now define natural powers. Here we pick $m \in \mathbb{N}$ and use Theorem 4.5 to construct $\left\{m^{n}: n \in \mathbb{N}\right\}$ satisfying

$$
\begin{equation*}
m^{0}=1 \quad \wedge \quad \forall n \in \mathbb{N}: m^{S(n)}=m \cdot m^{n} . \tag{5.23}
\end{equation*}
$$

Note that this entails $m^{0}=1$ (even for $m=0$) while $0^{n}=0$ for $n \neq 0$. Similarly, $1^{n}=1$ for all $n \in \mathbb{N}$. The following properties will again be of relevance:
Lemma 5.11 (Powers) Let $m \in \mathbb{N} \backslash\{0\}$. Then
(1) $\forall r, s \in \mathbb{N}: m^{r+s}=m^{r} \cdot m^{s}$,
(2) $\forall r, s \in \mathbb{N}: m^{r \cdot s}=\left(m^{r}\right)^{s}$.

Proof. Proved readily by induction.
A related construction permits us to construct the factorial of n, with notation $n!$, by imposing

$$
\begin{equation*}
0!=1 \quad \text { and } \quad \forall n \in \mathbb{N}: S(n)!=S(n) \cdot n! \tag{5.24}
\end{equation*}
$$

By (5.21), the statement in the second part can be written as $(n+1)!=(n+1) \cdot n!$, which is the recursive form of the informal expression $n!=n \cdot(n-1) \cdots \cdots 1$.

Factorials appear frequently in combinatorial arguments (indeed, $n!$ is the number of permutations of n elements) but also appears in analytic expressions (thanks to, for instance, Taylor's theorem).

