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4. THE NATURALS

We are now sufficiently acquainted with set theoretical foundations to move to the defi-
nition of natural numbers. First we observe that the intuitive definition

N :“ t0, 1, 2, . . . u (4.1)

is not proper as there is no clear meaning to the dots. This has been recognized by
G. Peano who put forward the following axiomatic definition:

Definition 4.1 (Peano axioms) A triplet pN, 0, Sq is said to be a system of naturals if the

following five axioms hold:

(P1) N is a set and 0 P N,

(P2) S is a function S : N Ñ N with DompSq “ N,

(P3) @n P N : Spnq ‰ 0,

(P4) @n, m P N : Spnq “ Spmq ñ n “ m,

(P5) @A Ñ N : 0 P A ^ SpAq Ñ A ñ A “ N.

The first two axioms basically identify what the objects in pN, 0, Sq are so the real power
rests with Axioms P3-P5. The element 0 is called the zero element while S is called the
successor function and elements of its range are called successors. Axiom P3 tells us that 0
is not a successor while P4 imposes that the successor function is injective. These two
properties ensure that N is not too small (and, in particular, that N is infinite) by ruling
out, e.g., the set t0, 1, 2, . . . , 10u with the successor function acting cyclically.

The most powerful axiom of all is P5, often referred to as the Induction principle, which
ensures that N is not too large and guarantees many other useful facts. One of its ele-
mentary consequences is that 0 is the only element that is not a successor:

Lemma 4.2 For any system of naturals pN, 0, Sq, we have SpNq “ N r t0u.

Proof. Let A :“ SpNq Y t0u. Then 0 P A and, using A Ñ N

SpAq Ñ SpNq Ñ A (4.2)

By P5, we have A “ N. As 0 R SpNq by P3, we have SpNq “ N r t0u. ⇤
Another consequence is the ability to use proofs by induction when one verifies a

statement depending on a natural first for zero and then proves the statement for n
implies the statement for n ` 1. That this is enough is the content of:

Lemma 4.3 (Proof by induction) Let pN, 0, Sq be a system of naturals and tPn : n P Nu be
(logical) propositions indexed thereby. Suppose that

(1) (Induction basis) P0 is TRUE, and
(2) (Induction step) @n P N : Pn ñ PSpnq.

Then tn P N : Pnu “ N, i.e., Pn is TRUE for all n P N.

Proof. Let A :“ tn P N : Pnu. By (1) we have 0 P A and by (2) we have @n P N : n P A ñ

Spnq P A, i.e., SpAq Ñ A. By P5, A “ N as claimed. ⇤
The main task of this section is to show that the naturals exist. This comes in:

Theorem 4.4 (Existence of the naturals) There is at least one system of naturals.
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Before we delve into the proof, let us make a historical note: In late 1800s a number of
“proofs” of existence were put forward which all turned out to be flawed. One reason
for this is that an axiomatic set theory can be cast without requiring existence of infinite
sets (this is so called “Finite set theory”). Such a theory could not accommodate the
naturals as these are necessarily infinite (in whatever meaning of this we take). We will
thus have to use Axiom of infinity somewhere in the proof.
Proof of Theorem 4.4. Axiom of Infinity guarantees the existence of a set I such that

H P I ^ @X P I : tXu P I (4.3)

With the choices 0 :“ H and SpXq :“ tXu this set would satisfy P1-P4 of Peano axioms
but it is too large to obey P5 as there are many subset thereof (corresponding, in a related
construction, to limit ordinals) that are closed under S. We will thus define the naturals
as the smallest set that contains H and is closed under S.

Consider a collection of all such sets

K :“
!

J Ñ I : H P J ^ p@X : X P J ñ tXu P Jq

)
(4.4)

which exists thanks to Powerset and Separation Axioms. We then claim that

N :“
£

K (4.5)

obeys N P K. For this note that X P N is equivalent to @J P K : X P J which is equivalent
to @J P K : tXu P J which then implies tXu P N. Similarly, H P N because @J P K : H P J.

Next we define

0 :“ H ^ @X P N : SpXq :“ tXu (4.6)

and proceed to check that pN, 0, Sq is a system of naturals. First we check Peano axioms
P1-P4: From N P K we have that N is a set with H P N, proving P1. For the same
reason, S defined above is a function N Ñ N with DompSq “ N, proving P2. Axiom of
Extensionality ensures that tXu “ tYu implies X “ Y thus showing that S is injective,
proving P4. The same axiom shows that H is not a set in the range of S, proving P3.

It remains to prove the Induction Principle P5. For that let A Ñ N be such that H P A
and SpAq Ñ A. This is readily checked to imply A P K and so N Ñ A by (4.5). Lemma 2.3
now gives A “ N, proving P5. ⇤

Our next task is to prove uniqueness of the naturals (up to natural isomorphism). This
will hinge on a result that we will find useful later:

Theorem 4.5 (Recursion principle) Given a system of naturals pN, 0, Sq, a set E and a func-
tion h : E Ñ E with Domphq “ E we have:

@a P E DtXn : n P Nu Ñ E : X0 “ a ^

´
@n P N : XSpnq “ hpXnq

¯
. (4.7)

Moreover, the collection tXn : n P Nu satisfying (4.7) is unique — meaning that if tX1
n : n P Nu

obeys the same recursions, then @n P N : Xn “ X1
n.

Preliminary version (subject to change anytime!) Typeset: January 25, 2023



MATH 131AH notes 20

The purpose of the above is to give a rigorous meaning to the informal recursive
definition whose first couple of steps are written as

X0 :“ a
X1 :“ hpaq where 1 :“ Sp0q

X2 :“ hphppaqq where 2 :“ Sp1q

X3 :“ hphphppaqqq where 3 :“ Sp2q

... . . . . . . . . .

(4.8)

Although this sounds very plausible, the technical problem with this “construction” are
the dots. Indeed, the procedure at best defines Xn “up to” any given natural n but
defining that for all n simultaneously requires infinitely many iterations which cannot
be formalized along the lines above.

The actual proof will avoid these ambiguities by careful use of set theory. The idea
that we will consider all possible functions f : N Ñ E whose domain is a (finite or
infinite) string of integers such that f pSpnqq “ hp f pnqq for all n P Domp f q. Then we take
the union of the graphs of these functions and prove that this is the graph of a function
whose domain is all of N.

While the idea is simple, its formal execusion is rather lengthy and may appear im-
penetrable for those new to the subject or untrained in logical reasoning. Readers that
feel overwhelmed by what is to come may consider skipping to the statement of Theo-
rem 4.7. That being said, all readers should understand the statement of Theorem 4.5 as
it will be used repeatedly throughout the course.
Proof of Theorem 4.5. Recall that a function f : N Ñ E technically a relation, and thus a
subset of N ˆ E. With this in mind we set

F :“

$
’&

’%
f Ñ N ˆ E :

f is a function ^ 0 P Domp f q ^ f p0q “ a

^

˜
@n P N : Spnq P Domp f q

ñ
`
n P Domp f q ^ f pSpnqq “ hp f pnqq

˘
¸

,
/.

/-
. (4.9)

In words, F is the set of relations that are functions from N to E whose domain con-
tains 0, contains the predecessor of all non-zero elements in its domain, take value a at 0
and assign value hp f pnqq to the successor of n. We now note:

Step 1: tp0, aqu P F and so F ‰ H

Proof. Let f “ tp0, aqu. Then f is (the graph of) a function with

Domp f q :“ t0u and f p0q :“ a. (4.10)

It follows that f P F and so F ‰ H. ⇤

Step 2: @ f , g P F @n P N : n P Domp f q X Dompgq ñ f pnq “ gpnq

Proof. Pick f , g P F and let

A :“
!

n P N : n P Domp f q X Dompgq ñ f pnq “ gpnq

)
(4.11)
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Every function in F is defined at 0 and takes value a there so 0 P A. Now let n P A and
consider Spnq. Using that an implication is vacuously TRUE if its premise is FALSE,

Spnq R Domp f q X Dompgq ñ Spnq P A. (4.12)

is TRUE trivially. On the other hand, by the second line in the definition of F , the
assumption that Spnq P Domp f q X Dompgq implies n P Domp f q X Dompgq and

f
`
Spnq

˘
“ h

`
f pnq

˘
^ g

`
Spnq

˘
“ h

`
gpnq

˘
(4.13)

But from n P A we know that f pnq “ gpnq and so

Spnq P Domp f q X Dompgq ñ f
`
Spnq

˘
“ g

`
Spnq

˘
. (4.14)

It follows that n P A implies Spnq P A meaning that SpAq Ñ A. By P5, we get A “ N

which is equivalent to the claim. ⇤

Step 3: Define pf :“
î

F . Then pf P F .

Proof. The definition gives pf Ñ N ˆ E. We first show that pf is (the graph of) a function.
For that let n P N and assume that, for some x, y P E we have pn, xq P pf and pn, yq P pf .
Then there exist f , g P F such that n P Domp f q X Dompgq and x “ f pnq and y “ gpnq.
But step 2 then gives f pnq “ gpnq and so x “ y. So pf is a function and, moreover,

@n P Domp pf q D f P F : n P Domp f q ^ pf pnq “ f pnq. (4.15)

which will come handy in what follows.
We now have to check that pf lies in F . Step 1 gives 0 P Domp pf q and pf p0q “ a. Suppose

now n P N is such that Spnq P Domp pf q. By (4.15) there is f P F such that Spnq P Domp f q

and pf pSpnqqq “ f pSpnqq. But f P F and Spnq P Domp f q implies

n P Domp f q ^ f
`
Spnq

˘
“ h

`
f pnq

˘
(4.16)

and, since pf is the graph of a function that contains the graph of f , also

n P Domp pf q ^ pf pnq “ f pnq ^ pf
`
Spnq

˘
“ h

` pf pnq
˘

(4.17)

This proves that pf P F . ⇤

Step 4: Domp pf q “ N

Proof. Denote A :“ Domp pf q. Then 0 P A by pf P F . Next let n P A and assume,
for the sake of contradiction, Spnq R A. By (4.15), there is f P F with n P Domp f q

and Spnq R Domp f q. Now consider the function g : N Ñ E with domain Dompgq :“
Domp f q Y tSpnqu and values given by

gpmq :“

#
f pmq, if m P Domp f q,
h

`
f pnq

˘
, if m “ Spnq.

(4.18)

We claim g P F . Clearly, g is a function with 0 P Dompgq and gp0q “ a. Next let m P N

be such Spmq P Dompgq. Two alternatives are then possible. First, we may have Spmq P

Domp f q, which by f P F forces m P Domp f q and

g
`
Spmq

˘
“ f

`
Spmq

˘
“ h

`
f pmq

˘
“ h

`
gpmq

˘
(4.19)
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where the first equality is by Spmq P Domp f q, the second by f P F and the third by m P

Domp f q. Second, we may have Spmq “ Spnq which by the injectivity of S forces m “ n
and so we get

g
`
Spmq

˘
“ g

`
Spnq

˘
“ h

`
f pnq

˘
“ h

`
gpnq

˘
(4.20)

where the first equality is by Spmq “ Spnq, the second by definition of gpSpnqq and the
third by n P Domp f q and the fact that gpnq “ f pnq. But g P F implies Spnq P Domp pf q “

A, a contradiction. It follows that SpAq Ñ A and, by P5, A “ N. ⇤
With the above in hand we are ready to complete the proof: The function pf : N Ñ E

with Domp pf q “ N constructed above obeys pf p0q “ a and pf pSpnqq “ hp pf pnqq. Set-
ting Xn :“ pf pnq for n P N thus proves (4.7). To show uniqueness, let tX1

n : n P Nu

be another such a family. Set A :“ tn P N : Xn “ X1
nu. Then 0 P A because X0 “ a “ X1

0
and if n P A, then Xn “ X1

n implies XSpnq “ hpXnq “ hpX1
nq “ X1

Spnq and so Spnq P A, thus
showing SpAq Ñ A. Hence A “ N by P5. ⇤

Remark 4.6 We note that, writing E as N ˆ E1 for a set E1 and letting h : N ˆ E1
Ñ N ˆ E1

be the function pn, xq fiÑ pSpnq, hnpxqq for a given collection thn : n P Nu of functions
hn : E1

Ñ E1, Theorem 4.5 accommodates for the situation that tXn : n P Nu obeys

X0 “ a ^
`
@n P N : XSpnq “ hnpXnq

˘
(4.21)

This allows that the “recursive rule” depends explicitly on the order of iteration.

We are now in a position to state and prove uniqueness of the naturals:

Theorem 4.7 (Uniqueness of the naturals) Let pN, 0, Sq and pN1, 01, S1
q be two systems of

naturals. Then there is a bijection f : N Ñ N1 such that

fp0q “ 01
^ f ˝ S “ S1

˝ f. (4.22)

Proof. Using Theorem 4.5 with the choices E :“ N1, a :“ 01 and h :“ S1 produces a
function f with domain Dompfq “ N and properties (4.22). It remains to show that this
(and, in fact, any such) function is a bijection.

We start by proving that f is surjective. Let A :“ Ranpfq. Then 01
P A by the first part

of (4.22) while the second part thereof implies

S1
pAq “ S1

˝ fpNq “ f ˝ SpNq Ñ fpNq “ A. (4.23)

By P5 for the system pN1, 01, S1
q we have A “ N1 thus showing that f is onto.

Next we show that f is injective. Consider the set

A :“
!

n P N :
`
@m P N : fpmq “ fpnq ñ m “ n

˘)
(4.24)

The aim is to prove that A “ N. First note that if fpmq “ 01, then m “ 0 for otherwise
Lemma 4.2 gives m “ Spkq for some k P N and

01
“ fpmq “ f ˝ Spkq “ S1

˝ fpkq P RanpS1
q (4.25)

in contradiction with P3 for the system pN1, 01, S1
q. Since 01

“ fp0q and since the above
holds for all m P N, it follows that 0 P A.
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Next assume that n P A and let m P N be such that fpSpnqqq “ fpmq. Then the
previous argument shows m ‰ 0 and so m P RanpSq, by Lemma 4.2. This means that
m “ Spkq for some k P N and fpSpnqq “ fpmq then rewrites into

S1
˝ fpnq “ S1

˝ fpkq (4.26)

The injectivity of S1 forced by P4 for the system pN1, 01, S1
q then gives fpnq “ fpkq which

by n P A forces n “ k and so Spnq “ Spkq “ m. As m was arbitrary, we conclude
that Spnq P A thus showing SpAq Ñ A. By P5 for system pN, 0, Sq we get A “ N and
so f is indeed injective as claimed. ⇤

Note that the above theory treats natural numbers in the abstract sense and, in par-
ticular, without reference to a specific “number system” or labeling convention. In light
of our prior hands-on experience with the naturals, this may seem clumsy at first but is
indispensable if we want to prove all familiar properties of standard number systems
from axioms of set theory (rather than postulating them as axioms instead, as is done in
many real-analysis textbooks).
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