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23. ABSOLUTE VS CONDITIONAL CONVERGENCE

Here we refine the concept of convergent series into absolutely convergent and condi-
tionally convergent series. The former notion will later be appreciated once we discuss
power series in the next quarter.

23.1 Absolute convergence.

Although the convergence of infinite series reduces to the notion of convergence se-
quences, the fact that we are writing the relevant sequence as a sum brings up the fol-
lowing natural questions: Can the sum of infinitely many numbers be performed in any
order? And what if some of the terms are subtracted instead of being added? Such
considerations natural guide us toward the following concept:

Definition 23.1 (Absolute convergence) We say that the infinite series
∞8

n“0 an con-
verges absolutely if

∞8
n“0 |an| converges (in R).

We note that an infinite series with non-negative entries converges if and only if the
sequence of partial sums is bounded. So absolute convergence is often stated as

8ÿ

n“0
|an| † 8. (23.1)

The reader may also wonder why the term “convergence” is made part of the definition
of “absolute convergence” as it refers to convergence of a different infinite series. That
this is fine is the content of:

Lemma 23.2 If an infinite series converges absolutely, then it converges.

Proof. By the Cauchy criterion (Lemma 22.10), the convergence of the series
∞8

n“0 |an| is
equivalent to

@e ° 0 Dn0 P N @n, m P N : n • m • n0 ñ

nÿ

k“m

|ak| † e. (23.2)

The triangle inequality for absolute value gives

ˇ̌
ˇ

nÿ

k“m

ak

ˇ̌
ˇ §

nÿ

k“m

|ak|, (23.3)

and so (23.2) implies

@e ° 0 Dn0 P N @n, m P N : n • m • n0 ñ

ˇ̌
ˇ

nÿ

k“m

ak

ˇ̌
ˇ † e. (23.4)

By the Cauchy criterion again,
∞8

n“0 an converges. ⇤
A lot of properties of finite sums extends to infinite series as well; for instance:
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Lemma 23.3 (Triangle inequality for infinite series) Suppose
∞8

n“0 an is absolutely conver-
gent. Then

ˇ̌
ˇ

8ÿ

n“0
an

ˇ̌
ˇ §

8ÿ

n“0
|an| (23.5)

We leave the proof of this easy lemma to homework. Note that the expression is mean-
ingful although not very informative even without absolute convergence (we get `8 on
the right-hand side); of course, we then still have to assume that

∞8
k“0 ak converges.

Moving forward on one of our questions above, we now note:

Theorem 23.4 An absolutely convergent infinite series can be summed in any order with the
same result. More precisely, if tanunPN is a sequence of reals such that (23.1) holds, then for
every bijection f : N Ñ N,

lim
nÑ8

nÿ

k“0

afpkq “

8ÿ

k“0

ak. (23.6)

Proof. Let f : N Ñ N be a bijection. Fix e ° 0. Since the series
∞n

k“0 an converges
absolutely, the Cauchy criterion gives n0 • 1 such that

@n, m P N : m • n • n0 ñ

mÿ

k“n

|ak| † e. (23.7)

Define m0 P N by
m0 :“ inf

 
m • 0 : fpr0, n0qq Ñ r0, mq

(
(23.8)

The fact that f is injective then forces n0 § m0 and we have fpr0, n0qq Ñ r0, m0q. Using
that f is bijective we get that, for each m • m0 (which implies m • n0), the terms
a0, . . . , an0´1 appear in both sums in

mÿ

k“0

afpkq ´

mÿ

k“0

ak (23.9)

and thus cancel out from the expression, while the terms an0 , . . . , am1 appear at most
twice there. Using also (23.7) it follows that

@m • m0 :
ˇ̌
ˇ

mÿ

k“0

afpkq ´

mÿ

k“0

ak

ˇ̌
ˇ §

mÿ

k“n0

2|ak| † 2e. (23.10)

As t
∞m

k“0 akumPN converges to
∞8

k“0 ak, from (23.3) and (23.7) we get

@m • m0 :
ˇ̌
ˇ̌

mÿ

k“0

ak ´

8ÿ

k“0

ak

ˇ̌
ˇ̌ § e. (23.11)

Using the triangle inequality we conclude

@m • m0 :
ˇ̌
ˇ

mÿ

k“0

afpkq ´

8ÿ

k“0

ak

ˇ̌
ˇ † 2e ` e “ 3e. (23.12)

Since e was arbitrary, this proves that
∞8

k“0 afpkq converges to
∞8

k“0 ak. ⇤
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The fact that the order of summation does not matter for absolutely convergent series
underlies the proof that various standard manipulations with finite sums apply to infi-
nite series. One of the useful manipulations concerns the product of two infinite series:

Lemma 23.5 (Merten’s theorem for Cauchy product) Let tanunPN and tbnunPN be se-
quences of reals such that

∞8
n“0 an is convergent and

∞8
n“0 bn is absolutely convergent. Setting

@n P N : cn :“
nÿ

k“0

akbn´k (23.13)

the series
∞8

n“0 cn is then convergent as well and
8ÿ

n“0
cn “

´ 8ÿ

n“0
an

¯´ 8ÿ

n“0
bn

¯
(23.14)

If both
∞8

n“0 an and
∞8

n“0 bn converge absolutely, then so does
∞8

n“0 cn.

Proof. Assume that
∞8

n“0 bn converges absolutely and
∞8

n“0 an converges. Let n P N. A
simple rearrangement of the sums shows

nÿ

k“0

ck “

nÿ

k“0

bk

n´kÿ

j“0

aj (23.15)

Hereby we get
´ nÿ

k“0

bk

¯´ nÿ

j“0

aj

¯
´

nÿ

k“0

ck “

nÿ

k“1

bk

nÿ

j“n´k`1

aj (23.16)

Since
∞8

n“0 an and
∞8

n“0 |bn| converge, given e ° 0, the Cauchy criterion gives existence
of k0 P N such that

@m • n • k0 :
ˇ̌
ˇ

mÿ

k“n

ak

ˇ̌
ˇ † e ^

nÿ

k“m

|bk| † e (23.17)

The convergence also implies that

a :“ sup
m•n•0

ˇ̌
ˇ

mÿ

k“n

ak

ˇ̌
ˇ † 8 ^ b :“

8ÿ

k“0

|bk| † 8 (23.18)

Assuming n • 2n0, we then have
ˇ̌
ˇ̌
´ nÿ

k“0

bk

¯´ nÿ

j“0

aj

¯
´

nÿ

k“0

ck

ˇ̌
ˇ̌ §

nÿ

k“0

|bk|

ˇ̌
ˇ

nÿ

j“n´k`1

aj

ˇ̌
ˇ

§

´tn{2uÿ

k“0

|bk|

¯ˇ̌
ˇ

nÿ

j“n0

aj

ˇ̌
ˇ `

nÿ

k“tn{2u
|bk|

ˇ̌
ˇ

nÿ

j“n´k`1

aj

ˇ̌
ˇ § be ` ea “ epa ` bq (23.19)

Using
∞n

k“0 ak Ñ A :“
∞8

k“0 ak and
∞n

k“0 bk Ñ B :“
∞8

k“0 bk, this shows

AB ´ epa ` bq § lim inf
nÑ8

nÿ

k“0

ck § lim sup
nÑ8

nÿ

k“0

ck § AB ` epa ` bq (23.20)
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Since e is arbitrary positive, this shows equality of the limes superior and limes inferior
and, consequently,

∞n
k“0 ck Ñ AB. For the class clause note that |cn| §

∞n
k“0 |ak||bn´k| so

the claim follows from (23.14) with an replaced by |an| and bn by |bn|.
The last clause is proved by repeating the arguments with |an| and |bn| instead of an

and bn (although a shorter and more direct argument is possible). ⇤

Remark 23.6 The previous proof is considerably easier when both series converge abso-
lutely. Indeed, (23.16) gives

ˇ̌
ˇ̌
´ nÿ

k“0

bk

¯´ nÿ

j“0

aj

¯
´

nÿ

k“0

ck

ˇ̌
ˇ̌ §

nÿ

k“0

|bk|

nÿ

j“n´k`1

|aj|

§

ˆ nÿ

k“0

|bk|

˙ˆ nÿ

j“tn{2u
|aj|

˙
`

ˆ nÿ

k“tn{2u
|bk|

˙ˆ nÿ

j“0

|aj|

˙ (23.21)

and the right-hand side then tends to zero as n Ñ 8 by the “decaying tail” property of
convergence series; cf Corollary 22.12. The same argument applies for series of absolute
values, which by the inequality

|cn| §

nÿ

k“0

|ak||bn´k| (23.22)

also shows absolute convergence of
∞8

k“0 ck.

23.2 Conditional convergence.

The reliance on absolute convergence in above statements is not merely a convenience
of proofs. In order to demonstrate that, introduce the following concept:

Definition 23.7 (Conditional convergence) We say that the infinite series
∞8

n“0 an con-

verges conditionally if

8ÿ

n“0
an converges ^

8ÿ

n“0
|an| diverges (23.23)

We have thus separated convergent series into those that are absolutely convergent
and those that are (only) conditionally convergent. An example of a conditionally con-
vergent series is

8ÿ

n“1

p´1q
n´1

n
(23.24)

Since the harmonic series diverges (see Lemma 22.8), this series definitely fails to con-
verge absolutely. But it converges conditionally, thanks to even numbered partial sums
converging in light of

2nÿ

k“1

p´1q
n´1

k
“

nÿ

k“1

´ 1
2k ´ 1

´
1
2k

¯
“

nÿ

k“1

1
p2k ´ 1q2k

§

nÿ

k“1

1
4k2 (23.25)
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where the series on the right converges by Lemma 22.9, and thanks to

ˇ̌
ˇ
2n´1ÿ

k“1

p´1q
n´1

k
´

2nÿ

k“1

p´1q
n´1

k

ˇ̌
ˇ §

1
2n

›Ñ
nÑ8 0 (23.26)

which shows that the odd-numbered partial sums converge to the same limit as the
even-numbered ones. This example is actually a special case of a general fact:

Lemma 23.8 (Alternating series) Let tanunPN be a sequence such that

@n P N : 0 § an ^ an`1 § an ^ lim
nÑ8 an “ 0 (23.27)

Then the alternating series
∞8

n“0p´1q
nan converges.

We leave the easy proof of this lemma to homework while noting that although the
conditions on tanunPN require that an Ñ 0, which we know to be necessary for conver-
gence of

∞8
n“0p´1q

nan, apart from positivity and monotonicity they do not require any-
thing else. Thus, there are many examples where

∞8
n“0 an diverges while

∞8
n“0p´1q

nan
converges (albeit, by definition, only conditionally).

A similar idea underlies an example which shows that we cannot apply the Cauchy
product formula (23.14) to series neither of which converge absolutely. Indeed, taking
an “ bn :“ p´1q

n
{
?

n for n “ 1 and a0 “ b0 “ 0 in (23.13) shows c0 “ 0 and, for n • 1,

cn “ p´1q
n

n´1ÿ

k“1

1a
kpn ´ kq

(23.28)

Since at least one of k or n ´ k is at least tn{2u, hereby we get

|cn| •
1a
n{2

tn{2uÿ

k“1

k´1{2 (23.29)

where (by a similar reasoning underlying the proof of Lemma 22.9) the sum is at least
a constant times

?
n. Hence cn does not tend to zero as n Ñ 8 and so

∞n
k“1 ck fails to

converge by Lemma 22.5.
As our last counterexample, we show that not even Theorem 23.4 holds for condition-

ally convergent sequences. In fact, we have:

Theorem 23.9 (Riemann’s rearrangement theorem) Suppose
∞8

n“0 an converges condition-
ally (and thus not absolutely). Then for each x P R there is a bijection f : N Ñ N such that

lim
nÑ8

nÿ

k“0

afpkq “ x. (23.30)

In short, conditionally convergent series can be rearranged to converge to any real number.

The proof hinges on the following observation:

Lemma 23.10 Suppose
∞8

n“0 an converges conditionally (and thus not absolutely). Define

a`
n :“ maxtan, 0u and a´

n :“ maxt´an, 0u. (23.31)
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Then
8ÿ

n“0
a`

n diverges ^

8ÿ

n“0
a´

n diverges. (23.32)

Proof. Note that an “ aǹ ´ ań while |an| “ aǹ ` ań . The lack of absolute convergence
means that at least one of the series in (23.32) diverges. Since

8ÿ

n“0
a`

n “

8ÿ

n“0
a´

n `

8ÿ

n“0
an (23.33)

where the series on the right converges, once one of the series in (23.32) diverges, so
must the other. ⇤
Proof of Theorem 23.9. Pick x P R. The main idea is quite simple: We will start listing the
non-negative terms of tanunPN in the given order until their sum first exceeds x. Then
we start listing the negative terms of tanunPN (starting from the first one) until the sum of
all terms so far first drops again under x. Then we start listing the positive terms again,
and then the negative terms, etc until all terms have been listed. (That we never fail to
reach x is the consequence of (23.32).) Since x is overshot by at most |an|, for an being the
last term added, the fact that an Ñ 0 as implied by convergence of

∞8
k“0 ak then shows

that the partial sums of thus rearranged series tend to x, as desired.
The formal construction of the bijection f requires introduction of there auxiliary se-

quences tnkukPN, tmkukPN and tskukPN. These are defined recursively by

n0 :“ 0 ^ m0 :“ 0 ^ s0 :“ a0 ^ fp0q :“ 0 (23.34)

and, for all k P N,

sk § x ñ

#
nk`1 :“ inftn ° nk : an • 0u ^ mk`1 :“ mk

sk`1 :“ sk ` ank ^ fpk ` 1q :“ nk`1
(23.35)

and

x † sk ñ

#
nk`1 :“ nk ^ mk`1 :“ inftm ° mk : am † 0u

sk`1 :“ sk ` amk`1 ^ fpk ` 1q :“ mk`1
(23.36)

Here we note that (23.32) implies that tanunPN has infinitely many non-negative terms
and infinitely many negative terms, and so the infima in (23.35–23.36) are well defined.

It remains to check that f is a bijection and that (23.30) holds. For injectivity note
that fpkq “ fpjq implies that either afpkq and afpjq are both non-negative and so fpkq “

nk ^ fpjq “ nj by (23.35), or afpkq and afpjq are both positive and so fpkq “ mk ^ fpjq “

mj by (23.36). But nk “ nj with k † j implies that anj † 0 § ank by (23.35), while mk “ mj
with k † j implies amj • 0 ° amk by (23.36), a contradiction. We conclude that fpkq “ fpjq
implies k “ j and so f is injective.

To prove that f is surjective, assume Ranpfq ‰ N and let n :“ inf Ranpfq. If an • 0,
then the fact that tnkukPN is non-decreasing implies that it is bounded by n. This means
that the alternative (23.36) occurs from some k on, showing that

x § sk `

8ÿ

j“k`1

amj “ sk `

ÿ

j“mk`1

p´a´
j q (23.37)
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in contradiction with the second part of (23.32). The case an † 0 is handled similarly and
so we omit it.

Finally, to show that the partial sums converge, let e ° 0 and, noting that an Ñ 0 by
the fact that the series

∞8
n“0 an converges, let q0 P N be such that @q • q0 : |aq| † e. Set

k0 :“ inftk • 1 : nk • q0 ^ mk • q0u. Then the construction ensures

@k • k0 : x ´ e §

kÿ

j“0

afpjq § x ` e (23.38)

and so we get the desired claim. ⇤

23.3 Tests for absolute convergence.

We finish this section by listing some criteria for proving absolute convergence known,
very likely, already from Calculus. The first one is:

Lemma 23.11 (Comparison test) Suppose tanunPN and tbnunPN are sequences such that
´

@n P N : |an| § bn

¯
^

8ÿ

n“0
bn † 8. (23.39)

Then
∞8

n“0 an converges absolutely.

Proof. This follows from Lemma 22.7 with an replaced by |an| (and bn :“ 0). ⇤
A first try at the dominating sequence is the geometric progression. This leads to two

limit criteria well-known called the Ratio and Root Test in calculus (albeit generalized
by invoking limes superior instead of a plain limit). Let us start with:

Lemma 23.12 (Ratio test, convergence part) Suppose tanunPN is a sequence such that

@n P N : an ‰ 0 (23.40)

and
lim sup

nÑ8

ˇ̌
ˇ
an`1

an

ˇ̌
ˇ † 1. (23.41)

Then
∞8

n“0 an converges absolutely.

Proof. The properties of limes superior implies

Dn0 P N : q :“ sup
n•n0

ˇ̌
ˇ
an`1

an

ˇ̌
ˇ † 1. (23.42)

By induction we then infer

@n • n0 : |an| § qn´n0 |an0 | “ qn`
q´n0 |an0 |

˘
(23.43)

Since |an| “ qn
pq´n

|an|q, hence we get

@n P N : |an| § qn max
k“0,...,n0

`
q´k

|ak|
˘

(23.44)

Denoting the term on the right-hand side by cn, the fact that q † 1 ensures that
∞8

n“0 cn
converges. By Lemma 23.11, the series

∞8
n“0 an converges absolutely. ⇤
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The Ratio Test is inconvenient for two reasons: First, we need to require that an ‰ 0.
Second, the failure of the condition (23.41) does not signify divergence of the series.
Indeed, defining

@n P N : a2n “

´1
3

¯2n
^ a2n`1 :“

´1
2

¯2n
(23.45)

then the series
∞8

n“0 an converges absolutely yet the limes superior in (23.41) is infinite.
This can be mended by requiring that the limit actually exists:

Lemma 23.13 (Ratio test, divergence part) Suppose tanunPN is a sequence such that

@n P N : an ‰ 0 (23.46)

and, assuming the following limit exists,

lim
nÑ8

ˇ̌
ˇ
an`1

an

ˇ̌
ˇ ° 1. (23.47)

Then
∞8

n“0 an diverges.

We leave the proof of this lemma to the reader. Instead we move to:

Lemma 23.14 (Root test) Suppose tanunPN is a sequence of reals. Then

lim sup
nÑ8

n
a

|an| † 1 ñ

8ÿ

n“0
an converges absolutely, (23.48)

while

lim sup
nÑ8

n
a

|an| ° 1 ñ

8ÿ

n“0
an diverges. (23.49)

Proof. As for the Ratio Test, we again dominate the series
∞8

n“0 an by a geometric series.
Assume first lim supnÑ8

n
a

|an| † 1. Then

Dn0 P N : q :“ sup
n•n0

n
a

|an| † 1. (23.50)

It follows that |an| § qn for all n • n0 and thus

@n • n0 : |an| § qn max
k“0,...,n0

`
q´k

|ak|
˘
. (23.51)

As q † 0, Lemma 23.11, the series
∞8

n“0 an converges absolutely.
Next let us assume lim supnÑ8

n
a

|an| ° 1. Then

Dn0 P N : q :“ sup
n•n0

n
a

|an| ° 1. (23.52)

But then lim supnÑ8 |an| • lim supnÑ8 qn
“ 8 which by Lemma 22.5 is inconsistent

with convergence of
∞8

n“0 an. ⇤
We remark that if the ratio test applies, then so does the root test. The root test is

particularly useful for power series, i.e., series of the form
∞8

n“0 anxn, where x is a real
or complex variable. We will discuss these next quarter after we have covered absolute
convergence.

Both ratio and root tests are based on comparison to the geometric series. Neither
test is exhaustive because no conclusion is made when the limes superior in (23.48–23.49)
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equals one. In this case a more elaborate comparison (usually, to a polynomially decay-
ing series) is made or some other analytic tools have to be invoked to decide convergence
or divergence.
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