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22. INFINITE SERIES

We will now proceed discussing an interesting application of the concept of limit of real-
valued sequences to infinite series.

22.1 Definition and examples.

Let us first settle on some notation. Given a sequence tanunPN of real numbers, for
each n P N we can recursively define the symbol

∞n
k“0 ak by:

0ÿ

k“0

ak :“ a0 ^

´
@n P N :

n`1ÿ

k“0

ak :“ an`1 `

nÿ

k“0

ak

¯
. (22.1)

For the resulting sequence
! nÿ

k“0

ak

)

nPN
of partial sums we then impose:

Definition 22.1 (Infinite series) Given a sequence tanunPN of reals, the infinite series
8ÿ

k“0

ak is said to be convergent (or converges) if lim
nÑ8

nÿ

k“0

ak exists in R. We then use the

symbol of infinite series to denote the limit, i.e.,

8ÿ

k“0

ak :“ lim
nÑ8

nÿ

k“0

ak. (22.2)

If the limit does not exist (in R), we say that the infinite series is divergent (or diverges).

In this case, the symbol of infinite series remains formal (i.e., without a numerical value).

As we are basing our labeling on the naturals, we will typically “start” the summa-
tions at n “ 0. However, other initial values of the summation come up as well with the
definitions adapted accodingly.

There are very few examples for which the series is computable. One of these is the
geometric series

8ÿ

n“0
qn (22.3)

which (at this point) is a formal expression depending on parameter q called the quotient.
Here we get:

Lemma 22.2 (Geometric series) For each q P R with |q| † 1, the geometric series (22.3) is
convergent with

8ÿ

n“0
qn

“
1

1 ´ q
. (22.4)

For q P R with |q| • 1 the series is divergent.

Proof. Denote sn :“
∞n

k“0 qk. Then sn ` qn`1
“ sn`1 “ 1 ` qsn, which gives p1 ´ qqsn “

1 ´ qn`1. When q “ 1 this equation contains no information but otherwise we get

@q ‰ 1 @n P N :
nÿ

k“0

qk
“

1 ´ qn`1

1 ´ q
. (22.5)
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For q with |q| † 1, we have qn`1
Ñ 0 and so the infinite series converges with the limit as

in (22.4). On the other hand, for q with |q| ° 1 as well as q “ ´1, the sequence tqn`1
unPN

does not converge and nor does the infinite series. The same applies to q “ 1 (which was
excluded from (22.5)) where

∞n
k“0 qk equals n ` 1 that diverges as n Ñ 8 as well. ⇤

We note that the simplicity of the criterion for convergence of the geometric series is
so simple, and the limit being readily computable, puts the geometric series at the center
of many estimates and computations involving infinite series.

Building on the geometric series, our second example concerns the vary familiar ex-
pression of a real number using a decimal expansions. While quite intuitive and ubiq-
uitous, the precise meaning of this expansion cannot be explained without the notion of
the limit or, more accurately, infinite series. In order to state everything precisely, recall
the symbol txu for lower-integer rounding of x defined by

txu :“ suptn P Z : n § xu. (22.6)

We then get:

Lemma 22.3 (Expansion of the reals) Let L P N be such that L • 2. For each x P r0, 1q,
define the sequence txnunPN recursively by

x0 :“ x ^

´
@n P N : xn`1 :“ Lxn ´ tLxnu

¯
(22.7)

and set an :“ tLxnu. Then an P t0, 1, . . . , L ´ 1u for all n P N and

x “

8ÿ

n“0

an

Ln`1 (22.8)

where the series on the right is convergent.

Proof. Notice that, since z ´ tzu P r0, 1q for each z P R, we have xn P r0, 1q for each n P N.
Also note that an P t0, 1, . . . , L ´ 1u for each n P N. We claim

@n P N : x “
xn`1

Ln`1 `

nÿ

k“0

ak

Lk`1 (22.9)

This is checked readily for n “ 0 and then proved by induction using the fact that

xn “
xn`1

L
`

an

L
. (22.10)

(We leave the details to the reader.) Since xn`1 P r0, 1q, from (22.9) we get

x ´
1

Ln`1 §

nÿ

k“0

ak

Lk`1 § x. (22.11)

As L ° 1, the left-hand side converges to x. By Lemma 14.7 and the Squeeze Theorem
(Lemma 21.8), so do the partial sums in the middle. ⇤

The construction in (22.7) can be easily visualized with the help of the long-division
algorithm: the an’s are the digits extracted in progressive divisions by L and xn’s are the
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corresponding remainders. The number x P r0, 1q can then be represented by a sequence
of digits from t0, . . . , L ´ 1u written as

0.a0a1a2 . . . (22.12)

All x P R can written this way by adding the integer txu to the expression representing
the number x ´ txu.

We note that the construction (22.7) never outputs a sequence tanunPN that ends with
an infinite run of pL ´ 1q’s. For instance, for base-10 expansions (L :“ 10), the number
0.099999 . . . will thus never arise; instead, we get 0.1000 . . . right away in the first step
of the long division. (Prove this!) The map x fiÑ tanunPN taking r0, 1q into t0, . . . , L ´ 1u

N

is thus not onto and tanunPN fiÑ x defined by (22.8) is not injective. But the defect is not
too serious as it concerns only a countable set (not even all rationals).

Another interesting aspect of decimal expansions is the subject of:

Lemma 22.4 Let x P r0, 1q and the sequence tanunPN P t0, . . . , L ´ 1u
N be as in Lemma 22.3.

The following are equivalent:
(1) x is rational, x P Q,
(2) tanunPN is eventually periodic, i.e.,

Dn0 P N Dp P N @n P N : p ° 1 ^ p n • n0 ñ an`p “ anq (22.13)

Thus, the number 0.21345 is rational but 0.101001000100001000001 . . . is not.
We also note that the above expansion is not the only way to represent reals by se-

quences of naturals. Another such representation (restricted to irrationals) is the continued-
fraction expansion,

x “
1

a0 `
1

a1` 1
a2`...

(22.14)

which is for x P p0, 1q r Q defined by

x0 :“ x ^ @n P N : xn`1 :“ 1{xn ´ t1{xnu (22.15)

and setting an :“ t1{xnu. (The restriction to x R Q ensures that xn ‰ 0 and an • 1 for
all n P N.) While this may appear somewhat similar to the decimal expansions, there is
no connection to infinite series.

22.2 Criteria for convergence.

As noted above, most infinite series are not explicitly computable. (One standard excep-
tion is the series

∞8
n“1

1
npn`1q which can be computed using partial-fraction expansion.

Do it!) Therefore, in order to determine whether a series converges one has to resort to
various general criteria. We will now discuss a few of these, starting with:

Lemma 22.5 (Necessary conditions for convergence) Let tanunPN be a sequence of reals
such that

∞8
n“0 an converges. Then

lim
nÑ8 an “ 0. (22.16)

Proof. Let sn :“
∞n

k“0 ak. Then an “ sn ´ sn´1. Under the assumption of convergence,
the limit L :“ limnÑ8 sn exists and equals the value of the infinite series. From the
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addition/subtraction rule for limits, we then get

lim
nÑ8 an “ lim

nÑ8psn ´ sn´1q “ lim
nÑ8 sn ´ lim

nÑ8 sn´1 “ L ´ L “ 0. (22.17)

This is the desired claim. ⇤
We warn the reader that this is a necessary condition for convergence. Such conditions

are typically used to rule out convergence, rather than to prove it. A sufficient condition
for convergence is provided in:

Lemma 22.6 (Boundedness suffices for positive coefficients) Suppose tanunPN is such that
an • 0 for each n P N. Then

8ÿ

n“0
an converges ô

#
nÿ

k“0

ak

+

nPN

is bounded. (22.18)

Proof. The positivity requirement ensures that the sequence on the right of (22.18) is non-
decreasing. Non-decreasing sequences converge if and only if they are bounded. ⇤

Somewhat more useful is:

Lemma 22.7 (Comparison test) Suppose tanunPN, tbnunPN, tcnunPN are sequences with

@n P N : 0 § bn § an § cn. (22.19)

Then
8ÿ

n“0
cn converges ñ

8ÿ

n“0
an converges (22.20)

and
8ÿ

n“0
bn diverges ñ

8ÿ

n“0
an diverges (22.21)

Proof. From (22.19) we have

@n P N :
nÿ

k“0

bk §

nÿ

k“0

ak §

nÿ

k“0

ck. (22.22)

The partial sums of series with non-negative coefficients form non-decreasing sequences
which converge if and only if they are bounded. This readily yields (22.20–22.21). ⇤

Using the comparison criterion, we readily conclude that the infinite series (22.8) con-
verges for any choice of tanunPN satisfying an P t0, 1, . . . , L ´ 1u. Another use of the
Comparison Test produces:

Lemma 22.8 (Harmonic series)
8ÿ

n“1

1
n

diverges.

Proof. The idea of the proof is to bound the sequence

1,
1
2

,
1
3

,
1
4

,
1
5

,
1
6

,
1
7

,
1
8

,
1
9

, . . . (22.23)
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from below by the sequence

1
2

,
1
4

,
1
4

,
1
8

,
1
8

,
1
8

,
1
8

,
1
16

,
1

16
, . . . (22.24)

and then notice that each block with the same denominator adds up to 1{2.
Formally, this is done as follows: First note that for each n P N with n • 1 there is

exactly one k P N such that 2k
§ n † 2k`1. Then

2k
§ n † 2k`1

ñ
1
n

°
1

2k`1 (22.25)

and so for all m • 1,
2m´1ÿ

n“1

1
n

“

m´1ÿ

k“0

2k`1´1ÿ

n“2k

1
n

•

m´1ÿ

k“0

2k`1´1ÿ

n“2k

1
2k`1 “

m´1ÿ

k“0

2k 1
2k`1 “

1
2

m (22.26)

The right hand side diverges as m Ñ 8, which means that the sequence of partial sums
for the harmonic contains a diverging subsequence, and is thus diverging itself. ⇤

The same type of reasoning then also gives:

Lemma 22.9 For each p ° 1, the series
8ÿ

n“1

1
np converges.

Proof. We follow a similar reasoning as in the previous lemma, but now aiming to prove
convergence. Indeed, for any m • 1,

2m´1ÿ

n“1

1
np “

m´1ÿ

k“0

2k`1´1ÿ

n“2k

1
np §

8ÿ

k“0

p21´p
q

k (22.27)

The geometric series on the right converges because its quotient 21´p has absolute value
less than one, due to p ° 1. ⇤

Note that, despite the sequence of coefficients decaying only polynomially, in both
cases we ended up comparing the series to the geometric series (where exponential de-
cay/growth is of concern). As noted earlier, this is a very common approach — and,
usually, the first one to try — as it is guided by the fact that the geometric series has a
simple convergence criterion and/or is explicitly computable.

We also note that the situation around the harmonic series can be further refined using
similar methods. Indeed, we thus show that

8ÿ

n“2

1
n log n

diverges yet @p ° 1 :
8ÿ

n“2

1
nplog nqp converges (22.28)

The case on the left can be further refined by adding log log n terms, etc.
The next criterion is based on the equivalence of convergence and being Cauchy:

Lemma 22.10 (Cauchy criterion) Let tanunPN be a sequence of reals. Then
8ÿ

n“0
an converges ô @e ° 0 Dn0 P N @m • n • n0 :

ˇ̌
ˇ

mÿ

k“n

ak

ˇ̌
ˇ † e. (22.29)
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Proof. The convergence of
∞8

n“0 an is defined by the existence of the limit of t
∞n

k“0 akunPN.
This is equivalent to the sequence of partial sums being Cauchy. As

mÿ

k“0

ak ´

n´1ÿ

k“0

ak “

mÿ

k“n

ak, (22.30)

that is in turn equivalent to the condition on the right of (22.29). ⇤
As a consequence of this we get:

Corollary 22.11 (Finite changes are irrelevant for convergence) If tanunPN and tbnunPN

are sequences such that  
n P N : an ‰ bn

(
is finite (22.31)

then 8ÿ

n“0
an converges ô

8ÿ

n“0
bn converges. (22.32)

Proof. The Cauchy criterion is not affected by changing the underlying sequence on a
naturals bounded by some n1 since we can always take n0 larger than n1. ⇤

Another consequence is:

Corollary 22.12 (Decaying tail) Let tanunPN be a sequence of reals. Then
8ÿ

n“0
an converges ñ

´
@n P N :

8ÿ

k“n

ak converges
¯

^ lim
nÑ8

8ÿ

k“n

ak “ 0. (22.33)

Proof. Suppose
∞8

n“0 an converges. Changing the first n terms of the underlying se-
quence to zero, Corollary 22.11 shows that

∞8
k“n ak converges for each n P N. Then

|
∞m

k“n ak| § e for all m • n implies |
∞8

k“n ak| § e. The gives the limit in (22.33). ⇤
We will give other criteria for convergence when we discuss the notions of absolute

and conditional convergence in the next lecture.
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