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21. LIMSUP AND LIMINF

In the remaining lectures of this quarter, we will return to the subjects that are more
familiar from calculus. Our first step is to finish some aspects of convergence in R that
have been overshadowed by our treatment of metric spaces. The first step towards this
goal is to introduce the notions of upper and lower limits of a sequence.

21.1 The extended reals.

A defining property of the reals ensure that every non-empty set of reals that admits
an upper bound admits a supremum. The two stated conditions on the set are actually
somewhat related; indeed, by definition, every a P R is an upper bound on H but there
is no supremum of H because the set of all upper bounds of H, which is simply R, does
not have a least element. In order to overcome this issue we give:

Definition 21.1 The set of extended reals R is defined as

R :“ R Y t`8, ´8u (21.1)

where `8 and ´8 are elements called positive and negative infinity that obey

`8 R R ^ ´8 R R ^ `8 ‰ ´8 (21.2)

The ordering relation § on R is then extended to R by

´8 § 8 ^
`
@a P R : ´ 8 § a ^ a § 8

˘
. (21.3)

It is readily checked that§ is a total ordering of R with `8 being the maximal element
and ´8 being the minimal element. As a consequence, every subset A Ñ R now admits
at least one upper bound and at least one lower bound. The sets A Ñ R that admit no
upper bound in R then have their supremum equal to positive infinity,

@A Ñ R :  
`
Dx P R @a P A : a § x

˘
ñ suppAq “ `8 (21.4)

while the sets without a lower bound in R have their infimum equal to negative infinity,

@A Ñ R :  
`
Dx P R @a P A : x § a

˘
ñ suppAq “ ´8 (21.5)

Note that, although (21.4–21.5) do not include the case when A “ H, because there
each x P R (in fact, each x P R) is an upper bound as well as a lower bound, we still get

suppHq “ ´8 ^ infpHq “ `8 (21.6)

by the minimality, resp., maximality of ´8, resp., `8 in R. Sets that do contain `8

have only `8 as an upper bound, and so the supremum equals `8 for these. Similarly
for the infimum of sets that contain ´8.

In summary, we have proved:

Lemma 21.2 Every A Ñ R admits a supremum and an infimum in R.

The introduction of the two infinities to R is very convenient for the ordering and it
preserves most of the intuitive properties we usually associate with these concepts in
the reals. For instance we have

@A, B Ñ R : A Ñ B ñ

´
infpBq § infpAq ^ suppAq § suppBq

¯
(21.7)
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and
@A Ñ R : A ‰ H ñ infpAq § suppAq (21.8)

with the warning that the conclusion actually fails for A empty, due to (21.6).
Unfortunately, the situation is more complicated once algebraic operations with in-

finities are needed. Many standard operations remain defined; for instance,

@a P R : a ` p`8q :“ `8 ^ a ` p´8q :“ ´8 (21.9)

and
@a P R : a ° 0 ñ a ¨ p˘8q :“ ˘8 (21.10)

and
@a P R : a † 0 ñ a ¨ p˘8q :“ ¯8 (21.11)

where, by convention, we either read only the top signs or only the bottom signs from
all ˘ and ¯ on the same line. We also define

p`8q ` p`8q :“ `8 ^ p´8q ` p´8q :“ ´8 (21.12)

which show ´p`8q “ ´8 and ´p´8q “ `8, and

p`8q ¨ p`8q :“ `8 ^ p`8q ¨ p´8q :“ ´8 (21.13)

If need arises, we might at times also stipulate that

p˘8q
´1 :“ 0 (21.14)

but this is not in the sense of the inverse element under multiplication. However, R is
no longer a field because expressions

`8 ` p´8q, ´8 ` p`8q, 0 ¨ p˘8q (21.15)

are left undefined. In any case, the reader is caution to perform all algebraic operations
involving the two infinities with extreme caution as errors are made easily.

21.2 Upper and lower limits.

Having extended supremum and infimum to all subsets of extended reals, we will now
apply these concepts to sequences. Given a sequence tanunPN of extended reals, for
each n P N we define the symbols

sup
m•n

am :“ sup
 

am : m P N ^ n § m
(

(21.16)

and
inf

m•n
am :“ inf

 
am : m P N ^ n § m

(
(21.17)

From tanunPN we have thus generated the sequences of its suprema and infima,
 

sup
m•n

am
(

nPN
and

 
inf

m•n
am

(
nPN

, (21.18)

that are non-increasing and non-decreasing, respectively, and will thus converge pro-
vided they are bounded. This is leads to:
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Definition 21.3 (Limsup and liminf) Given a sequence tanunPN P R
N

, we define its

limes superior, a.k.a. upper limit or limsup, by

lim sup
nÑ8

an :“ inf
n•0

sup
m•n

am (21.19)

and its limes inferior, a.k.a. lower limit or liminf, by

lim inf
nÑ8 an :“ sup

n•0
inf

m•n
am (21.20)

Both upper and lower limits generally take values in R even if tanunPN is R-valued.
Note also that, by the monotonicity of the sequences (21.18) n • 0 in (21.19–21.20) could
be replaced by n • k for any k P N, and so the quantities depend only on the asymptotic
properties of tanunPN (meaning that changing any finite number of elements will not
affect the upper and lower limits). The quantities are also naturally ordered:

Lemma 21.4 For any tanunPN P R
N,

lim inf
nÑ8 an § lim sup

nÑ8
an (21.21)

Proof. We claim that
@n, k P N : inf

m•k
am § sup

m•n
am (21.22)

To prove this we first note that the conclusion of (21.22) is TRUE if n “ k by (21.8). Now
if k § n, we use this to get

inf
m•k

am § inf
m•n

am § sup
m•n

am (21.23)

which holds by (21.7) because the set of indices involved in the first infimum is larger
than that in the second infimum, while for n § k we use

inf
m•k

am § sup
m•k

am § sup
m•n

am (21.24)

where the same argument gives the bound between the two suprema. Since § is a total
ordering of N, we have proved (21.22) in all cases.

From (21.22) we get that tsupm•n amunPN are all upper bounds on tinfm•n amunPN.
Lemma 9.6 along with (21.7) then gives

sup
n•0

inf
m•n

am “ sup
 

inf
m•n

am : n P N
(

§ inf
 

sup
m•n

am : n P N
(

“ inf
n•0

sup
m•n

am
(21.25)

thus proving the desired inequality. ⇤

21.3 Connection with convergence.

The sequences (21.18) squeeze the terms of the sequence tanunPN between them, and the
further we go along the sequence, the more squeezed that they get. It thus appears that
equality holding in (21.21) must correspond to the sequence having a limit. This is true,
albeit under the additional assumption of boundedness:
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Theorem 21.5 Let tanunPN be a sequence of reals. Then

lim
nÑ8 an exists ô tanunPN bounded ^ lim inf

nÑ8 an “ lim sup
nÑ8

an. (21.26)

When both sides are TRUE, then the limit on the left equals the common value of limsup and
liminf on the right.

Proof of ñ in (21.26). Suppose that tanunPN has a limit and let us call the limit L. As
sequential convergence in R arises from a metric, Lemmas 17.4 shows that tanunPN is
bounded, so it suffices to prove equality of limsup and liminf. Here we note that con-
vergence to a limit means that for all k P N there is n0 P N such that

@n • n0 : |an ´ L| †
1

k ` 1
(21.27)

This is rewritten as

@n • n0 : L ´
1

k ` 1
† an † L `

1
k ` 1

. (21.28)

Using the definitions (21.19–21.20) and Lemma 21.4 it follows that for all n • n0,

L ´
1

k ` 1
† inf

m•n
am § lim inf

nÑ8 an § lim sup
nÑ8

an § sup
m•n

am † L `
1

k ` 1
. (21.29)

But both limsup and liminf are finite by boundedness of tanunPN and so can subtract one
of the other to get

0 § lim sup
nÑ8

an ´ lim inf
nÑ8 an †

2
k ` 1

(21.30)

By the Archimedean property of the reals (see Theorem 11.1), the only non-negative real
number that is less than 2

k`1 for all k P N is zero and so

lim sup
nÑ8

an “ lim inf
nÑ8 an (21.31)

as claimed on the right-hand side of (21.26). ⇤
Proof of  in (21.26). The argument is similar, albeit somewhat easier. Suppose tanunPN

is bounded and (21.31) holds. The common value L of the latter quantities is then R-
valued. Fix k P N. Then

Dn0 P N : sup
m•n0

am † L `
1

k ` 1
, (21.32)

for otherwise L `
1

k`1 would be a better lower bound on the supremum sequence and,
similarly,

Dñ0 P N : inf
m•ñ0

am ° L ´
1

k ` 1
. (21.33)

But then

@m • maxtn0, ñ0u : L ´
1

k ` 1
† am † L `

1
k ` 1

(21.34)

Rewriting the inequalities on the right as |am ´ L| †
1

k`1 , we have proved that L is the
limit of tanunPN. ⇤
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Definition 21.6 (Improper limit) We say that a sequence tanunPN of reals has an im-

proper limit if

tanunPN is unbounded ^ lim inf
nÑ8 an “ lim sup

nÑ8
an. (21.35)

Under (21.35), the common value of limsup and liminf is then necessarily `8 or ´8

and the sequence tanunPN is bounded either from above or from below (but not both).
This permits us to extend the notation so that:

lim
nÑ8 an “ `8 if tanunPN is bounded from below and (21.35) holds (21.36)

and

lim
nÑ8 an “ ´8 if tanunPN is bounded from above and (21.35) holds (21.37)

In this case we will at times say that the limit exists in R.
Improper limits do not conform to the definition of the limit in R, which would imply

that the sequence is Cauchy and bounded (under Euclidean metric), both of which fail
for improper limits. However, they do become proper limits when we endow R with a
different metric, e.g.,

$̃px, yq :“
ˇ̌
ˇ

x
1 ` |x|

´
y

1 ` |y|

ˇ̌
ˇ (21.38)

where we set ˘8
1`|˘8| :“ ˘1. Indeed, in this metric R is simply a completion of R. This

makes saying that the limit exists in R completely consistent with our earlier definitions.

21.4 Manipulations with limits.

In order to conclude our general discussion of limits of real-valued sequences, we recall
some “rules” fo computing with such limits:

Lemma 21.7 (Sum, Product and Quotient Rules) Suppose tanunPN and tbnunPN are two
sequences such that the limits

A :“ lim
nÑ8 an ^ B :“ lim

nÑ8 bn (21.39)

exist in R. Then:
(1) lim

nÑ8pan ` bnq exists and equals A ` B,
(2) for any c P R, lim

nÑ8 can exists and equals cA,
(3) lim

nÑ8 an ¨ bn exists and equals A ¨ B,
(4) if bn ‰ 0 for all n P N AND B ‰ 0, then also

lim
nÑ8

an

bn
“

A
B

(21.40)

provided the expressions on the right are meaningful.

We leave the proof of these to the reader while noting that, for A, B P R, the require-
ment that the right-hand side are meaningful is trivial except in (21.40), where we need
to assume B ‰ 0. Once one or both of A and B are infinite, we have to exclude expres-
sions of the form (21.15).

We also get the very popular tool for proving existence of a limit:

Preliminary version (subject to change anytime!) Typeset: March 14, 2023



117 MATH 131AH notes

Lemma 21.8 (Squeeze Theorem) Suppose tanunPN, tbnunPN and tcnunPN are R-valued se-
quences such that

@n P N : bn § an § cn. (21.41)
If the limits in

L :“ lim
nÑ8 bn “ lim

nÑ8 cn (21.42)

exist in R. Then
lim

nÑ8 an “ L. (21.43)

We leave proofs of these facts to a homework exercise.

Preliminary version (subject to change anytime!) Typeset: March 14, 2023


