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20. COMPACTNESS AND TOPOLOGY

In the previous section, we defined the notion of sequential compactness by asking that
every sequences of points contain convergent subsequence. Here we will discuss the
consequences of compactness for the open sets, a.k.a. topology and then explain how
compactness arises in topological spaces.

20.1 Cantor’s intersection property.

A classical result of Cantor says that the reals are uncountable. We showed this in The-
orem 13.1 using a diagonal argument. This theorem was dated 1891, but Cantor first
proved the result nearly 20 years earlier by an argument that relies, in its nature, on
sequential compactness. Here is his theorem again:

Theorem 20.1 (Cantor 1874) r0, 1s :“ tx P R : 0 § x § 1u is not countable.

Proof. Suppose, for the sake of contradiction, that there is a sequence txnunPN of real
numbers such that r0, 1s “ txn : n P Nu. We will now construct two auxiliary sequences
tanunPN and tbnunPN satisfying

@n P N : 0 § an † bn § 1 (20.1)

as follows: Set a0 :“ 0 and b0 :“ 1 and, assuming an and bn have been defined so that
(20.1) holds, define an`1 and bn`1 by

@n P N :

$
’’&

’’%

xn §
an ` bn

2
ñ an`1 :“

an ` 2bn

3
^ bn`1 :“ bn

an ` bn

2
† xn ñ an`1 :“ an ^ bn`1 :“

2an ` bn

3

(20.2)

We now readily check that tanunPN is non-decreasing and tbnunPN is non-increasing. The
monotonicity upgrades (20.1) into

@n, m P N : n § m ñ an § bm (20.3)

and so each an is a lower bound on tbm : m P Nu and each bm is an upper bound on
tan : n P Nu. Denoting

a :“ suptan : n P Nu ^ b :“ inftbm : m P Nu (20.4)

we thus have 0 § a § b § 1 by an exercise in an earlier homework. (Alternatively, we
can use Lemma 17.6 to show that a “ limnÑ8 an and b “ limnÑ8 bn and then infer the
inequality from (20.1).) But (20.1–20.2) ensure

@n P N : xn R ran`1, bn`1s (20.5)

and, since ra, bs Ñ ran, bns for all n P N,

@n P N : xn R ra, bs (20.6)

In particular, the number a, which lies in r0, 1s, is not a member of txnunPN in contradic-
tion with the assumption that this sequence lists all points in r0, 1s. ⇤

The previous proof clearly uses the same idea as our proof of the Bolzano-Weierstrass
theorem and could be deduced from sequential compactness of r0, 1s. Notwithstanding,
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we can also recast the key argument in the previous proof as follows: Denote

Cn :“ ran, bns (20.7)

Then the monotonicities of tanunPN and tbnunPN give

@n P N : Cn`1 Ñ Cn (20.8)

and so tCnunPN is a sequence of nested closed non-empty subintervals of r0, 1s. The
proof then hinges on the fact that these properties imply

£

nPN

Cn ‰ H (20.9)

As it turns out, this argument (suitably generalized to closed sets) applies to all sequen-
tially compact spaces:

Theorem 20.2 (AC)(Cantor’s intersection property) A metric space pX, $q is sequentially
compact if and only if every nested sequence of non-empty close subsets has a non-empty inter-
section, i.e., for all tCnunPN P PpXq

N we have
´

@n P N : Cn closed ^ Cn ‰ H ^ Cn`1 Ñ Cn

¯
ñ

£

nPN

Cn ‰ H. (20.10)

Proof of necessity of (20.10). Assume that pX, $q is sequentially compact and let tCnunPN

be a sequence of non-empty closed sets with Cn`1 Ñ Cn for each n P N. Since Cn ‰ H,
we may pick (using the Axiom of Choice) xn P Cn for each n P N. The compactness of X
ensures existence of convergent subsequence, xnk Ñ x. Since nk • k, for each n P N we
have xnk P Cn as soon as k • n and so, since Cn is closed and thus contains the limits of
all convergent sequences, x P Cn for all n P N. It follows that x P

ì
nPN Cn and so the

intersection is indeed non-empty. ⇤
Proof of sufficiency of (20.10). For the converse let us now assume that, for each sequence
tCnunPN P PpXq

N, we have (20.10). Let txnunPN be a sequence from X. Then

Cn :“ txm : m • nu (20.11)

are closed (by definition) and non-empty, because xn P Cn for each n P N. Since A Ñ B
implies A Ñ B, we also have Cn`1 Ñ Cn for all n P N. By (20.10),

ì
nPN Cn ‰ H.

Let x P
ì

nPN Cn. By the fact that the closure of the set coincides with the set of the
adherent points (see Lemma 16.2), we have

@r ° 0 @n P N : Bpx, rq X txm : m • nu ‰ H. (20.12)

The sets Ik :“ tn • k : xn P Bpx, 2´k
qu then obey

@k P N : Ik infinite ^ Ik`1 Ñ Ik (20.13)

Defining tnkukPN from tIkukPN as in Lemma 19.7, we get

@k P N : $pxnk , xq † 2´k (20.14)

and so xnk Ñ x. The sequence txnunPN thus contains a convergent subsequence and
pX, $q is sequentially compact as claimed. ⇤
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20.2 Compactness via open covers.

The Cantor intersection property has the following equivalent formulation:

Theorem 20.3 (AC)(Countable open cover property) A metric space pX, $q has the Can-
tor intersection property (20.10) or, equivalently, is sequentially compact if and only if for any
sequence tOnunPN of open subsets of X,

§

nPN

On “ X ñ Dn P N :
n§

k“0

Ok “ X (20.15)

i.e., if and only if every countable open cover contains a finite subcover.

Proof. Note that, for any sequence tOnunPN of open subsets of X,

Cn :“ X r
n§

k“0

Ok (20.16)

defines a sequence of nested closed subsets of X. In addition, tOnunPN is a cover of X, i.e.,î
nPN On “ X, if and only if tCnunPN have empty intersection. So (20.15) is equivalent

the statement that, for any sequence tCnunPN P PpXq
N:

´
@n P N : Cn closed ^ Cn`1 Ñ Cn

¯
^

£

nPN

Cn “ H ñ Dn P N : Cn “ H. (20.17)

This is the contrapositive to (20.10). ⇤
The property from the previous theorem can further be generalized as follows:

Definition 20.4 (Compactness in topology) A topological space — i.e., a set X with a

class of open sets satisfying the standard axioms — is said to be compact if for any set

tOa : a P Iu of open subsets of X,

§

aPI
Oa “ X ñ DF Ñ I : F finite ^

§

aPF
Oa “ X (20.18)

The difference compared to Theorem 20.3 is that here we are asking the open cover
property to hold for arbitrary covers by open sets, not just countable ones. This makes a
difference in general — and constitutes the distinction between compactness and countable
compactness — but not for metric spaces. To explain this, recall the notion of separability
from Definition 16.9. We then note:

Lemma 20.5 (AC) Any totally bounded metric space pX, $q is separable.

Proof. The total boundedness implies

@k P N Dmk P N Dzpkq
1 , . . . , zpkq

mk P X :
mk§

i“0

Bpxpkq
i , 2´k

q “ X. (20.19)

Let
A :“

§

kPN

tzpkq
1 , . . . , zpkq

mk u (20.20)
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Then, being a countable union of finite sets, A is countable by Corollary 12.13. Moreover,
for each x P N and each n P N, there is z P A — namely, z P tzpnq

1 , . . . , zpnq
mn u — with

$px, zq † 2´n. It follows that A “ X and so X is separable. ⇤
The fact that the distinction between general open covers and countable open covers

makes no difference for metric spaces is then a consequence of:

Lemma 20.6 (Lindelöf’s lemma) Let pX, $q be separable. Then any open cover of X contains
a countable subcover, i.e., any class tOa : a P Iu of open sets,

§

aPI
Oa “ X ñ DJ Ñ I : J countable ^

§

aPJ
Oa “ X (20.21)

Proof. Let A Ñ X be a countable dense subset. Then A “ txn : n P Nu for some sequence
txnunPN. For each n P N, let

mpnq :“ inf
 

m P N : pDa P I : Bpxn, 2´m
q Ñ Oaq

(
, (20.22)

where the set under infimum is non-empty because, since tOa : a P Iu is a cover, the set
ta P I : x P Oau is non-empty and the fact that Oa is open shows that xn P Oa implies
Bpxn, 2´m

q Ñ Oa for m P N sufficiently large.
Assuming the Axiom of Choice, we now pick

an P
 

a P I : Bpxn, 2´mpnq
q Ñ Oa

(
(20.23)

for each n P N and claim §

nPN

Oan “ X. (20.24)

Indeed, let x P X. Since tOa : a P Iu is an open cover of X, there exist a P I and k P N

such that Bpx, 2´k
q Ñ Oa. The fact that A is dense in X in turn implies that there exists

n P N such that xn P Bpx, 2´k´1
q. But then

Bpxn, 2´k´1
q Ñ Bpx, 2´k

q Ñ Oa (20.25)

and so mpnq § k ` 1. This in turn implies

x P Bpxn, 2´k´1
q Ñ Bpxn, 2´mpnq

q Ñ Oan . (20.26)

Hence, every x P X satisfies x P
î

nPN Oan and so we get (20.24). ⇤
We now have all the ingredients needed for:

Theorem 20.7 (AC) For metric spaces, sequential compactness is equivalent to compactness.

Proof. Since the open cover property implies the countable open cover property as a
special case, the “if” part of Theorem 20.3 shows that compactness implies sequential
compactness. For the converse direction, a sequentially compact metric space is separa-
ble by Lemmas 19.10 and 20.5 and so, by Lemma 20.6, any open cover can be reduced to
a countable subcover. The “only if” part of Theorem 20.3 then ensures that this subcover
contains a finite sub-subcover, proving compactness. ⇤

We note that Lindelöf’s lemma extends even beyond metric spaces; namely, to the
spaces where the topology admits a countable base — these are called second-countable
spaces. In general, the topological spaces for which the conclusion of Lemma 20.6 holds
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are called Lindelöf spaces. Second countability is sufficient but not necessary for being
Lindelöf. The argument used in the proof of Lemma 20.6 can be used to prove the char-
acterization of open subsets of R; cf Theorem 15.14 which is sometimes also called Lin-
delöf’s lemma adding prefix “generalized” to the version in Lemma 20.6.

20.3 Consequences for cardinality.

The notions of compactness (and completeness) are interestingly linked with certain car-
dinality considerations for metric spaces. We saw one of these in Theorem 20.1 and
Lemma 20.5 but other similar connections exist. As these go beyond the scope of these
lectures, we will be very brief.

We start with a definition that is already familiar from homework:

Definition 20.8 (Perfect set) A subset A of a metric space is said to be perfect if it is

closed and has no isolated points.

There are many examples of perfect sets; e.g., any closed subinteral of R or the Cantor
ternary set, which is the image of t0, 1u

N under the map f from (13.5). The latter example
of the Cantor ternary set is actually very typical:

Theorem 20.9 Let pX, $q be a complete metric space and A Ñ X a perfect set. Then there is an
injection f : t0, 1u

N
Ñ A.

Proof (main idea). We present only the main idea. Let x P A. Since A is perfect, x is
not isolated and so a ball of radius 1 contains at least two points in A distinct from x,
say x0 and x1. Letting r0 :“ 1

3 mint$px, x0q, $px, x1q, $px0, x1qu, the closed balls B1
px0, rq

and B1
px1, rq then also contain two points each, say x00, x01 P B1

px0, rqr tx0u and x10, x11 P

B1
px1, rq r tx1u. Proceeding recursively, at level n P N of the recursion, we have defined

a distinct point xs0...sn P A for each s0, . . . , sn P t0, 1u with all these points separated by
at least distance rn. Then we set rn`1 to be 1{3 of the minimum distance between all the
points defined so far and then, in each closed ball B1

pxs0...sn , rn`1q, we pick two points
xs0...sn0 and xs0...sn1 distinct from xs0...sn .

Since $pxs0...sn`1 , xs0...sn q § rn`1 and rn Ñ 0 exponentially fast, we have

@s “ ps0, s1, . . . q P t0, 1u
N : f psq :“ lim

nÑ8 xs0...sn exists (20.27)

with f psq “ f ps1
q only if s “ s1 thanks to the use of closed balls and the fact that the

balls identified at level n are disjoint from one another. This is the desired injection. ⇤
As a consequence of this we get:

Corollary 20.10 A perfect set A has always at least the cardinality of the continuum. If the
underlying metric space is separable, then A is of the cardinality of the continuum.

Proof. Since t0, 1u
N has the cardinality of the continuum by (13.17), any sets that embeds

it injectively has at least that cardinality. On the other hand, any point x in a separable
metric space is a limit of a subsequence of the dense sequence of points and so can be
identified with a subset of N. As PpNq is equinumerous to t0, 1u

N, the space is of the
same cardinality as t0, 1u

N, which is that of the continuum. ⇤
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The conclusion can be pushed further: The Cantor-Bendixon theorem says that every
closed subset of a complete separable metric space decomposes uniquely into the union
of a perfect set and a countable set.

Note that, unless we assume the Continuum hypothesis, being at least of cardinality
of the continuum is generally more restrictive than just being uncountable (a proof of
any perfect subset of R being uncountable is given in the textbook). However, this is
actually not relevant here because, by Kuratowski’s theorem, every infinite complete and
separable metric space is either countable or of the cardinality of the continuum. In
short, the Continuum hypothesis actually does hold as a theorem in the set of complete
separable metric spaces. (Such spaces are called Polish, due to may of these ideas being
developed by Polish mathematicians in 1920-30s.)

Interested readers can find further analysis of these questions in textbooks on descrip-
tive set theory as well as book on general topology.
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