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2. SET THEORY

Every since about mid 1800s mathematicians realized that sets provide a useful tool to
express mathematical statements and proofs. We will now review some elementary facts
from this theory. Throughout we will mostly use the “naive” version of the theory where
all “sensible” operations on sets are allowed. We will nonetheless point out deficiencies
of the naive theory and give a quick overview of Zermelo’s axiomatic.

2.1 Naive set theory.

We start with the basic setting of naive set theory:

e The basic building blocks of naive set theory are sets, to be denoted by capital letters
A, B, etc. Sets are basically “containers” collecting other objects which, at least in
pure set theory, are themselves sets. For any two sets A, B, we thus assume the
existence of a (logical) proposition A € B, whose TRUE value designates that A
belongs to or is an element of B. We will write A ¢ B for —(A € B).

e In order to be able to form sets from other sets, we put forward a basic assumption,
termed the Comprehension Principle, which states that, for any predicate P(X) whose
parameter is a set,

{X: P(X)}is aset (2.1)
Using the Comprehension Principle we can construct many objects we are used to from
prior experience with set theory. For instance, we can define the empty set by

& := {X: FALSE} (2.2)

where “FALSE” stands for a logical proposition that takes only FALSE value. For aset A,
we can define its complement by

AC:={X: X ¢ A}. (2.3)

There are also a number of familiar operations on pairs of sets. Indeed, given sets A, B,
AuB:={X: XeAvXeY}
AnB:={X:XeArXeY}
ANB:={X:XeAnrX¢B}

AAB:=(ANB)u (B~ A),

(2.4)

define their union, intersection, set difference and symmetric difference, respectively.
The Comprehension Principle is rather strong to give us far more than the above. For
instance, for each set A we can define the singleton { A} containing just A by

{A} ={X: X =A} (2.5)
Here we used the equality sign “=" in the meaning of sameness or identity. (This symbol

is sometimes introduced as part of the setup of the theory; if not, then we define it as
A =B := ¥X: Xe A < X e B.) Similarly, we can pair two sets A and B into

{A,B} :={X: X=AvX=B} (2.6)
Another useful object is the set of all subsets of A, termed the power set, defined by
P(A) ={X: X< A}, (2.7)
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where we made use of the binary relation A is a subset of B with the definition
AcCB:= (VYXeA: XeB). (2.8)

(This is just a shorthand induced by the relation €.)
A rather important consequence of the Comprehension Principle is that it implies
existence of infinite sets. Indeed, first generalize the first line in (2.4) to

| JA:={X:(3Be A: X e B)} (2.9)

for the union of all sets contained in A. (Note that A U B = | J{A, B}.) The set
[:= {X: UXgX} (2.10)
is then closed under the operation X — X u {X} (meaning: VX € I: X u {X} € I) because
Jxuxy) = XUUXX:ng X u{X}, (2.11)

where we used various general facts U and < whose proof we leave to the reader.

Noting that (J € I because | J & = & < J, we now recursively check that I is infinite
according to the following definition: A set B is said to be infinite if there is an injective
map f: B — B such that Ran(f) := {f(X): X € B} is a proper subset of B (meaning;:
Ran(f) < B yet Ran(f) # B). For I in (2.11), this is witnessed by the map

£(X) = X U {X} (2.12)

which is injective because X U {X} = Y U {Y} isreduced to X = Y (for X, Y € I) by taking
the union (see the second equality in (2.11)), but is not onto because f does not have

/ATl

in its range. (The concepts of “injective”, “onto”, etc have yet to be introduced so this
explanation is mainly for those already in command of these terms.) The intuition of the
above construction is that I contains all elements in the set

{o12V {2 D} (2 2) 1221, - | 213)

which is “obviously” infinite.

Unfortunately, in the late 1900s it became gradually apparent that the naive set theory
contains inconsistencies. These started at large infinite sets but, ultimately, surfaced in
the following elementary mind-boggling paradox discovered by B. Russell in 1901:
Theorem 2.1 (Russell’s antinomy) In naive set theory,

{X: X ¢ X} (2.14)

is not a set. In particular, the comprehension principle is inconsistent.

Proof. Suppose, by way to contradiction, A := {X: X ¢ X} is a set. Then either A € A is
TRUE or A ¢ Ais TRUE. Butif A € A is TRUE then the predicate defining A forces A ¢ A
while if A ¢ A is TRUE then A € A because otherwise A would otherwise be included
in (2.14). Either possibility leads to a contradiction and so A is not a set. O

2.2 Zermelo’s axiomatic.

It is fair to say that Russell’s observation rattled the foundations of mathematics of that
day. A number of solutions was gradually proposed some of which permeate various
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treatments of set theory till today. Here we will follow the solution proposed by E. Zer-
melo in 1908 which, ultimately, leads to the so called ZFC set theory used prevalently
throughout analysis.

An important novelty of Zermelo’s approach was that one should rely on axiomatic
formulation of set theory modeled, in some way, on a similar approach to classical Eu-
clidean geometry. To dispense with Russell’s paradox, Zermelo proposed to restrict the
Comprehension Principle by requiring only:

e Separation axiom:
VBset: {X e B: P(X)}isaset (2.15)
Here we purposefully deviate from our earlier convention that tells us write the set (2.15)

as {X: X € B A P(X)}. Since the point of writing X € B is to enforce the “separation,”
we will adhere to this practice throughout the course. Russell’s argument then gives:

Lemma 2.2 LetBbeasetandlet A:={XeB: X¢ X}. ThenB¢ AN A¢ AN A¢B.

Proof. Assuming B € A we get Be B AND B ¢ B, a contradiction. So we must have B ¢ A
as claimed. Similarly, A € A implies A ¢ A, a contradiction. So A ¢ A holds as well. But
A ¢ A then forces A ¢ B because otherwise we would have A € A, a contradiction. [J

Unfortunately, with the Comprehension Principle gone as stated, we lose the ability
to define many of the above sets — specifically, ¢J (as there could no sets at all), A U
B (as there could be no sets subsuming both A and B), {A} (as there could be no set
containing A) and, for similar reasons, P(A) and I. Further axioms are thus needed. We
will now state Zermelo’s axioms in bullet-point format:

e Axiom of Extensionality:
VA,B:AzB@(VX:XEA@XEB). (2.16)

This axiom ensures that a set is uniquely determined by its elements.
e Empty set axiom:

IOVX: X ¢ I (2.17)
Thanks to Axiom of Extensionality, ¢J is the unique set with this property.
e Pairset axiom:
VXVYJAVZ:Ze A< (X=2ZvY=27). (2.18)

Again, the resulting set A is determined uniquely so we henceforth denote it {X, Y}
when X and Y are different and {X} when X =Y.
e Axiom of Union:

VAHBVX:XEB@(HCEA:XEC) (2.19)

This is a bit hard to parse at first sight. Here A is a set of sets and B is the union of
all elements in the elements of A. We use the notation | J A for B.
e Powerset axiom:
VAIBYX: Xc A< XeB (2.20)

Here B is thus the powerset P(A), i.e., the set of all subsets, of A. Again, the powerset
is unique by the Axiom of Extensionality.
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¢ Axiom of infinity:
HI:@EIA<VX:XEI:>{X}EI) 2.21)

The notation {X} is meaningful by the Pairset Axiom.

Here are some remarks on the above. First, as noted earlier, (2.16) requires the notion
of identity — represented by the equality sign — to be part of the setup of the theory.
Otherwise (2.16) can be read as a definition of “=" sign:

VA,B: A=B := (vx; XeA@XeB) (2.22)

meaning that two sets are said to be equal when they have exactly the same elements.
Yet another way to characterize equality is via:

Lemma 2.3 We have
VA, B: A=B < AcBABCA (2.23)

Proof. We first note that, given two predicates P(x) and Q(x) depending on x, we have
(Vx: P(x)) A (Vx: Q(x)) < Vx: P(x) A Q(x) (2.24)

To verify this, note that Vx: P(x) means that Ran(P) is {TRUE}, and similarly ¥x: Q(x)
means Ran(Q) = {TRUE}. The proposition on the left thus equivalent to both ranges
being equal {TRUE}, which is equivalent to that on the right. To get (2.23) from this,
we set P(X) := X € Aand Q(X) := X € B and apply (2.8) and (2.22) or the Axiom of
Extensionality. U

Second, the set-theoretical notation | J A for the “union of all sets in A” is often sub-
stituted by other, more intuitive, expressions such as

U{X: X e A} oreven U X (2.25)
XeA

With the union postulated to exist, we can define general intersection by
NAa:= {XeUA:(VCeA:XeC)}. (2.26)

with similar alternative notations as in (2.25). Similarly, while we will keep writing P(A)
for the power set of A in this course, in practice we at times write {X: X < A} in blatant
violation of the Separation Axiom.

While the Emptyset Axiom ensures existence of a set, the Axiom of Infinity ensures
existence of an infinite set. These may not exist otherwise in our universe (for instance,
if our universe of sets is the collection of finite subsets of the naturals). The Axiom of
Infinity in particular ensures existence of a set that contains

{212} o) wah. - } 227)

as a subset. This axiom is phrased already with its important applications — namely,
the construction of the naturals, which will arise from the set in (2.27) — in mind. (We
deviate from what stated initially in class for exactly this reason.)

Zermelo’s system includes one additional axiom, namely, the Axiom of Choice which
we will get to in the next section. Another axiom — called Axiom of Replacement — was
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added later to the system by A. Fraenkel and, independently, T. Skolem leading to (what
is now called) ZFC axiomatic — where the acronym stands for “Zermelo-Fraenkel with
Axiom of Choice.” The latter axiom is somewhat intricate to explain and we will not
state it explicitly. As we shall see, we can actually get a good way into real analysis
without needing either of them.

The Comprehension Principle can be retained in the axiomatic system by introducing
the notion of a class. This is just another way to describe a “collection of sets with a
given property” except that it is generally too large to be automatically called a set. By
definition, every set is a class but the class is a set only if it is contained in a set. Russell’s
paradox then shows only that there are classes that are not sets.

Further details (and inspiration for the above presentation) can be found in Yan-
nis Moschovakis” Notes on Set Theory, which is a wonderful advanced-undergraduate
introduction to set theory.
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