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19. SEQUENTIAL COMPACTNESS

As part of our proof of completeness of the reals we proved the Bolzano-Weierstrass the-
orem which states that every bounded sequence of the reals contains a convergent sub-
sequence. The aim of this section is to investigate how this concept generalizes to other
metric spaces.

19.1 Definition and necessary conditions.

We start by stating the desired property formally:

Definition 19.1 (Sequential compactness) Let pX, $q be a metric space. A set A Ñ X
is said to be sequentially compact if every sequence from A contains a subsequence

convergent to a point in A, i.e.,

@txnunPN P AN
DtnkukPN P NN

Dx P A : nk Ñ 8 ^ xnk Ñ x. (19.1)

A metric space pX, $q is sequentially compact if the above holds for A :“ X. Here and

henceforth nk Ñ 8 means @m P N : tk P N : nk § mu is finite.

We can check that A Ñ X is sequentially compact if and only if pA, $Aq is a sequentially
compact metric space. This means that, for many statements, we can focus directly on
A :“ X. Here is a simple example of a compact space:

Lemma 19.2 (Finite sets are compact) Any pX, $q with X finite is sequentially compact.

Proof. Let txnunPN be any sequence from X. Writing z1, . . . , zm for the points in X, set

@k “ 1, . . . , m : Ik :“
 

n P N : xn “ zk
(

. (19.2)

As
îm

k“1 Ik “ N, there exists k “ 1, . . . , m such that Ik is infinite. Let tnjujPN enumerate Ik;
i.e., set n0 :“ infpIkq and @j P N : nj`1 :“ inftn P Ik : n ° nju. Then nj • j and xnj “ zk for
all j P N and so nj Ñ 8 and xnj Ñ zk as desired. ⇤

While the previous proof may seems special to the setting of finite sets, the key argu-
ment there — which is a version of the “pigeon-hole principle” — is that the union of a
finite number of sets is infinite only if one of the sets is infinite. This argument will drive
the proofs characterizing sequentially compact sets in Rd or linking sequential compact-
ness to total boundedness. In this sense, sequentially compact spaces are the closest
relatives of finite ones.

We will now observe properties that are implied by, and are thus necessary for, sequen-
tial compactness. We start by noting:

Lemma 19.3 (AC)(Compactness implies boundedness) Let pX, $q be a metric space. Then

@A Ñ X : A sequentially compact ñ A bounded. (19.3)

Here we recall that a set A Ñ X is bounded if Dx P X Dr ° 0 : A Ñ Bpx, rq.

Proof. First we note that the definition of boundedness is equivalent to

@x P X Dr ° 0 : A Ñ Bpx, rq; (19.4)

i.e., with the D quantifier for the center of the ball replaced by @. Indeed, if A Ñ Bpx0, rq

for some x0 P X and some r ° 0, then for each x P X the triangle inequality shows
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A Ñ Bpx, r1
q where r1 :“ r ` $px, x0q. (Another equivalent way to define boundedness

of A is by the boundedness of $A but this is immaterial for this proof.)
We will now prove (19.3) by proving the contrapositive. The Axiom of Choice will

have to be invoked. Suppose that A is NOT bounded. Then

Dx P X @n P N : A r Bpx, nq ‰ H (19.5)

This means that for each n P N we may choose xn P A r Bpx, nq. Note that then we
have @n P N : $px, xnq • n. Such a sequence txnunPN cannot contain a convergent (or
even Cauchy) subsequence txnk ukPN because, by Lemma 17.4, that would require that
t$px, xnk qukPN be bounded, yet nk • k forces $px, xnk q • k. Hence, A NOT bounded
implies that A is NOT sequentially compact, proving (19.3). ⇤

Lemma 19.4 (AC)(Compactness implies closedness) Let pX, $q be a metric space. Then

@A Ñ X : A sequentially compact ñ A closed. (19.6)

Proof. We again prove the contrapositive. Theorem 16.5 implies

 pA closedq ñ DtxnunPN P AN
Dx P X : xn Ñ x ^ x R A. (19.7)

But any subsequence of txnunPN will then converge to x and so A NOT closed implies A
NOT sequentially compact. ⇤

19.2 Cantor diagonal argument.

From the previous lemmas we conclude that boundedness and closedness are necessary
conditions for sequential compactness. As it turns out, for X :“ R or Rd endowed with
the norm metric, these two conditions are also sufficient, thus completely characterizing
sequentially compact subsets of the Euclidean space. (We will explain the reasons why
the names of E. Heine and E. Borel are attached to this result when we discuss compact-
ness from the topology viewpoint.)

Theorem 19.5 (AC)(Heine-Borel property of Rd) Let d • 1 be a natural and consider the
metric space pRd, $q where $ is a norm-metric on Rd. Then

@A Ñ Rk : A sequentially compact ô A closed and bounded. (19.8)

The AC is used only for the direction ñ.

Proof. We have already proved ñ (with the help of AC) in the above lemmas, so let
us focus on . This direction was in fact already stated in Corollary 17.14 which was
proved along with the completeness of the Euclidean spaces in Theorem 17.10. We will
nonetheless provide a different reduction to completeness relying on (another instance
of) Cantor’s diagonal argument. By Proposition 17.11, it suffices to prove the claim just
for the 8-metric $8.

Let A Ñ Rd be closed and bounded and let txnunPN P AN. By shift and scaling (which
do not affect convergence of sequences) we may assume that A Ñ Q0 :“ r0, 1s

d. The
cube Q0 is covered by 2d translates Qp1q

0 , . . . , Qp2dq
0 of r0, 1{2s

d one of which must contain
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(by the aforementioned “pigeon-hole principle”) infinitely many terms in the sequence.
Denoting I0 :“ N and Jpiq

0 :“ tn P I0 : xn P Qpiq
0 u, it is thus meaningful to set

i1 :“ min
 

i “ 1, . . . , 2d : Jpiq
0 infinite

(
(19.9)

and let I1 :“ Jpi1q
0 and Q1 :“ Qpi1q

0 . Then I1 is infinite and @n P I1 : xn P Q1.
We now use the same argument recursively to define a sequence tQkukPN of cubes

and subsets tJkukPN as follows: Assume that for some k P N, a translate Qk of r0, 2´k
s

and an infinite set Ik Ñ N are defined such that @n P Ik : xn P Qk. Then cover Qk by 2d

translates Qp1q
k , . . . , Qp2dq

k of r0, 2´pk`1q
s so that these have disjoint interiors. Label these

in some predetermined fashion (so that no choice of labeling is required in each step).
One these cubes must then contain infinitely many terms of the subsequence txnunPIk .
Denoting Jpiq

k :“ tn P Ik : xn P Qpiq
k u, we then set

ik`1 :“ min
 

i “ 1, . . . , 2d : Jpiq
k infinite

(
(19.10)

and set
Ik`1 :“ Jpik`1q

k ^ Qk`1 :“ Qpik`1q
k (19.11)

Proceeding recursively, Qk and Jk is defined for all k P N.
The recursive definition ensures

@k P N : Qk translate of r0, 2´k
s
d

^ Qk`1 Ñ Qk (19.12)

and
@k P N : Ik infinite ^ Ik`1 Ñ Ik ^ @n P Ik : xn P Qk (19.13)

Remark 19.6 The set Ik induces a subsequence txnpkq
i

ukPN of txnunPN where tnpkq
i uiPN is

a strictly increasing sequence of naturals enumerating Ik. The condition Ik`1 Ñ Ik then
shows that the subsequences are nested, meaning that tnpk`1q

i uiPN is a subsequence of
tnpkq

i uiPN. Cantor’s diagonal argument is a way to choose a subsequence tn̂kukPN simulta-
neously from all these nested subsequences by the following recipe: Take the k-th term
from the k-th subsequence,

@k P N : n̂k :“ npkq
k . (19.14)

Technically, only the part of the diagonal sequence tn̂kukPN with indices k • ` is a subse-
quence of tnp`q

i uiPN, but this is usually ignored.

Working with subsequences of subsequences is notationally challenging at times and
so we will stick with the Ik’s. In our notation the above boils down to:

Lemma 19.7 (Cantor’s diagonal argument) Let tIkukPN P PpNq
N be such that

@k P N : Ik infinite ^ Ik`1 Ñ Ik (19.15)

Then
n0 :“ infpI0q ^ @k P N : nk`1 :“ inftn P Ik`1 : n ° nku (19.16)

defines a sequence tnkukPN P NN such that

@k P N : nk P Ik (19.17)
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Proof. This follows from Lemma 9.7 and the fact that the set on the right of (19.16) is
infinite, and thus non-empty, for each k P N. ⇤

We are now ready to conclude: Define tnkukPN by (19.16). Since nk • k for all k P N,
(19.13) and (19.17) give

@k P N : xnk P Qk (19.18)

which by the fact that Qk is a translate of r0, 2´k
s shows

@k, ` P N : k § ` ñ $8pxk, x`q § 2´k. (19.19)

Lemma 14.7 then implies that txnk ukPN is a Cauchy sequence. The completeness of
pRd, $8q proved in Theorem 17.10 then shows that this sequence converges and, since A
is closed, the limit belongs to A. Hence, A is sequentially compact as claimed. ⇤

The previous proof relied on the completeness of the underlying space. This is no loss
in light of completeness being another sufficient condition for compactness:

Lemma 19.8 (Compactness implies completeness) Let pX, $q be a metric space. Then

pX, $q compact ñ pX, $q complete. (19.20)

Proof. Let txnunPN be Cauchy. If txnunPN had a convergent subsequence, say xnj Ñ x,
then the Cauchy property would ensure xn Ñ x (HW problem) and so every Cauchy
sequence would be convergent. Thus compactness implies completeness. ⇤

Notwithstanding, even with completeness in place, a key restriction of the proof
was finite-dimensionality of Rd, as seen in the following example: Consider the set of
bounded sequences

`8
pNq :“

!
txnunPN P RN : bounded

)
(19.21)

endowed with the metric $8 associated with the norm
››txnunPN

››
8 :“ sup

nPN

|xn| (19.22)

where the supremum on the right abbreviates suptxn : n P Nu. (That this is a norm is
checked just as for the 8-norm on Rd.) The space p`8

pNq, $8q is also easily checked to
be complete. However, it fails to have the Heine-Borel property since the closed unit ball
(which is bounded)

B1
p0, 1q :“

!
txnunPN P RN : sup

nPN

|xn| § 1
)

(19.23)

contains sequences xpkq :“ txpkq
n unPN defined as

xpkq
n :“

#
1, if n “ k,
0, else,

(19.24)

whose terms are all unit distance apart, }xpkq
´ xp`q

}8 “ 1 when k • `. Such a sequence
txpkq

ukPN cannot contain convergent, or even Cauchy, subsequences.
Note that the latter holds in spite of the Cantor diagonal argument being applicable

here: Any sequence txpkq
ukPN of “points” xpkq :“ txpkq

n unPN P B1
p0, 1q has all coordinates
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contained in r´1, 1s. Using the same argument as in (19.9–19.17) we can choose a subse-
quence such that the first coordinate converges, from this one can choose another sub-
sequence such that the second coordinate converges, etc. Along the diagonal sequence
(19.14), all coordinates converge. However, and this is the catch or a key point, conver-
gence of coordinates is not sufficient to ensure the convergence in the 8-norm metric,
which requires that coordinates converge uniformly.

The problem is actually not specific to the choice of the norm-metric: Closed norm-
metric balls in complete linear vector spaces are NOT sequentially compact if (and only
if) the space is infinitely dimensional.

19.3 Total boundedness.

In light of the previous counterexample, the question is what other conditions should
we add on the right of (19.8) to guarantee sequential compactness. This comes in:

Definition 19.9 (Total boundedness) We say that a set A Ñ X is totally bounded if

@r ° 0 Dn P N Dx0, . . . , xn P A : A Ñ
n§

i“0

Bpxi, rq. (19.25)

The space pX, $q is totally bounded if this applies to A :“ X.

Total boundedness implies boundedness, indeed, (19.25) shows that

A Ñ Bpx0, r1
q for r1 :“ r ` pn ` 1q max

 
$px0, xjq : i “ 0, . . . , n

(
, (19.26)

but the converse is generally false. Also note that we actually do not need to require
(19.25) for all r ° 0; it suffices to require this for a sequence of r’s tending to zero. We can
also check that the total boundedness is inherited to relative topologies; indeed, if pX, $q

is totally bounded, so is every subset A Ñ X (prove this!). In particular, we only need to
prove statements about total boundedness of the whole space.

The reason why we introduce total boundedness is that it is another necessary condi-
tion for sequential compactness:

Lemma 19.10 (AC)(Compactness implies total boundedness) Let pX, $q be a metric space.
Then

pX, $q sequentially compact ñ pX, $q totally bounded. (19.27)

Proof. We will again aim to prove the contrapositive. Suppose that pX, $q is NOT totally
bounded. Then

Dr ° 0 @n P N @x0, . . . , xn P X : X r
n§

i“0

Bpxi, rq ‰ H. (19.28)

Using the Axiom of Choice, we may thus choose a sequence tzkukPN such that

x0 P X ^ @k P N : xk`1 P X r
k§

i“0

Bpxi, rq (19.29)

Now note that $pxi, xn`1q • r for all i “ 0, . . . , n and so we have

@m, n P N : m ‰ n ñ $pxm, xnq • r. (19.30)
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This again implies that txnunPN contains no convergent subsequence and so pX, $q is
NOT sequentially compact. ⇤

The total boundedness offers a way to approximate the metric space pX, $q by a fi-
nite metric space — namely, the space tx0, . . . , xnu consisting of the centers of the r-balls
Bpx0, rq, . . . , Bpxn, rq that cover X. This allows us to build on the proof of sequential
compactness in finite spaces and, particularly, on the argument underlying the charac-
terization of sequential compactness in Euclidean spaces:

Theorem 19.11 (AC) Let pX, $q be a metric space. Then

pX, $q sequentially compact ô pX, $q complete and totally bounded. (19.31)

In particular, if pX, $q is complete then

@A Ñ X : A sequentially compact ô A closed and totally bounded (19.32)

Proof. The proof of ñ reduces to the above lemmas, so we just need to prove . We
proceed very much like in the proof of Theorem 19.5. First, using the total boundedness
of pX, $q, for each k P N there is mk P N and the points zpkq

0 , . . . , zpkq
mk such that

mk§

i“0

B
`
zpkq

i , 2´k˘
“ X (19.33)

(A choice of these must be made without further information on X, which requires the
Axiom of Choice.) Given txnunPN P XN, we now define a sequence tIkukPN of infinite
subsets of N and a sequence tBkukPN of open balls in X recursively as follows: Since X
is bounded, there are r ° 0 and z P X such that X “ Bpz0, rq. Then set I0 :“ N and
Q0 :“ Bpz0, r0q. Next, assume that that for some k P N the infinite sets I0, . . . , Ik Ñ N

and open balls B0, . . . , Bk have already been defined, denote

@i “ 1, . . . , mn`1 : Jpiq
k :“

!
j P Ik : xj P B

`
zpk`1q

i , 2´pk`1q˘
)

. (19.34)

and, noting that (19.33) implies
mk`1§

i“0

Jpiq
k “ Ik (19.35)

the “pigeon-hole principle” forces at least one of the Jpiq
k ’s to be infinite. This means that

we can set
ik`1 :“ min

 
i P t1, . . . , mk`1u : Jpiq

k infinite
(

. (19.36)
and let

Ik`1 :“ Jpik`1q
k ^ Bk`1 :“ B

`
zpk`1q

ik`1
, 2´pk`1q˘ (19.37)

Since Ik`1 is infinite, the recursive definition can proceed for all n P N.
The recursive definition now ensures

@k P N : Ik infinite ^ Ik`1 Ñ Ik ^ @n P Ik : xn P Bk. (19.38)

The fact that Bk is an open ball of radius 2´k along with the triangle inequality gives

@k P N @m, n P Ik : $pxn, xmq † 2 ¨ 2´k
“ 21´k (19.39)
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Define the “diagonal” sequence tnkukPN as in Lemma 19.7. Then (19.17) and nk • k give

@j, k P N : j § k ñ $pxnj , xnk q § 2´nk`1
§ 21´k (19.40)

showing that txnk ukPN is Cauchy. Since pX, $q is assumed complete, txnk ukPN is conver-
gent and so pX, $q is sequentially compact. ⇤

It can be checked that a totally bounded space has a compact completion. Metric
spaces that have compact completion are called precompact. (In topological spaces that
are not metric, the notion of a completion is meaningless, but one then says that a set is
precompact if its closure is compact.) The above shows that being precompact is equiv-
alent to being totally bounded. A direct way to define a precompact set is by saying that
every sequence drawn from the set has a Cauchy subsequence.
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