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18. CONTRACTION MAPS AND COMPLETION

Here we continue discussing completeness albeit now for general metric spaces. For
spaces that are not complete, we introduce the notion of their completion. As it turns
out, this will give us yet another construction of the reals.

18.1 Completness and its consequences.

Complete metric spaces have a number of attractive properties that makes working with
them more convenient. We start by making some general observations about complete
spaces. The first one relates completeness to closedness:

Lemma 18.1 (AC)(Inheritance to closed subsets) Let pX, $q be a complete metric space and,
given A Ñ X, let $A be the metric induced on A. Then for all non-empty A Ñ X,

pA, $Aq complete ô A closed. (18.1)

Proof. Let txnunPN P AN. Then txnunPN is Cauchy in pX, $q is equivalent to txnunPN being
Cauchy in pA, $Aq so all Cauchy sequences in pA, $Aq converge to some point in X. By
Theorem 16.5 (which requires AC), this point is in A for all such sequences if and only
if A is closed. ⇤

Another type of inheritance concerns Cartesian products. Here we note that if pX, $Xq

and pY, $Yq be metric spaces, then $ : X ˆ Y Ñ R defined by

$8
`
px, yq, px̃, ỹq

˘
“ max

 
$Xpx, x̃q, $Ypy, ỹq

(
(18.2)

is a metric on X ˆ Y. We write the infinity symbol because the 8-norm on R2 is used im-
plicitly to combine the two metrics into one. If instead another norm (e.g., the Euclidean
norm) was used, we would get another metric, which by Proposition 17.11 turns out to
be equivalent to $8 according to the following definition:

Definition 18.2 (Equivalent metrics) Let $ and $1
be two metrics on X. We say that $

and $1
are equivalent if

Dc, C ° 0 @x, y P X : c$px, yq § $1
px, yq § C$px, yq (18.3)

We leave it to the reader to check:

Lemma 18.3 Equivalent metrics have the same Cauchy and convergent sequences, as well as
the same induced topologies.

We then put forward:

Definition 18.4 Let pX, $Xq and pY, $Yq be metric spaces. The associated product metric
space is the space pX ˆ Y, $q where $ is any metric equivalent to $8 in (18.2).

We then have:

Lemma 18.5 (Inheritance under Cartesian products) If pX, $Xq and pY, $Yq are complete,
then so is the product metric space pX ˆ Y, $q, for any metric $ that is equivalent to $8 in (18.2).
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Proof. Let $ be a metric on X ˆ Y that obeys c$p¨, ¨q § $8p¨, ¨q § C$p¨, ¨q. Let tpxn, ynqunPN

be a Cauchy sequence in pX ˆ Y, $8q. Since

$Xpxn, xmq § $8
`
pxn, ynq, pxm, ymq

˘
§ C$

`
pxn, ynq, pxm, ymq

˘
(18.4)

also txnunPN is Cauchy in X and, by the same argument, tynunPN is Cauchy in Y. The
assumed completeness implies existence of x P X and y P Y such that xn Ñ x and yn Ñ

y. Then $Xpxn, xq Ñ 0 and $Ypyn, yq Ñ 0, which implies $8ppxn, ynq, px, yqq Ñ 0 and thus
also $ppxn, ynq, px, yqq Ñ 0. Hence pxn, ynq Ñ px, yq and pX ˆ Y, $q is thus complete. ⇤

Having noted that completeness inherits nicely downward and upward, we now
move to one important practical consequence of completeness, which is the fact that
maps that contract distances admit a fixed point. We start with:

Definition 18.6 (Contraction map) Let pX, $q be a metric space. A map f : X Ñ X
(with Dompfq “ X) is a contraction if

Dc P R : 0 § c † 1 ^ @x, y P X : $
`
fpxq, fpyq

˘
§ c$px, yq (18.5)

The fact that c † 1 is crucial for this notion. That being said, we warn the reader that
the terminology is broken because linear operators (i.e., linear maps of linear spaces) are
called contractions if the above holds with c “ 1. Using the above definition, we have:

Theorem 18.7 (Banach’s contraction principle) Let pX, $q be a metric space and let f : X Ñ

X be a contraction map as in (18.5). Then

Dx P X : fpxq “ x (18.6)

meaning that f admits a fixed point. Moreover, the fixed point is unique,

@x, y P X :
`
fpxq “ x ^ fpyq “ y

˘
ñ x “ y (18.7)

In words, a contraction on a complete metric space has a unique fixed point.

Proof. Let c P R and f : X Ñ X be a contraction such that (18.5) holds. Pick x P X and
use recursion to construct txnunPN P XN so that

x0 “ x ^ @n P N : xn`1 “ fpxnq (18.8)

We claim that
@n P N : $pxn, xn`1q § cn$px0, x1q. (18.9)

This is proved by induction: Let Pn be the statement after the quantifier. Then P0 holds
trivially because c0

“ 1 and if Pn, then the contraction property (18.5) implies

$pxn`1, xn`2q “ $
`
fpxnq, fpxn`1q

˘
§ c$pxn, xn`1q

Pn
§ c ¨ cn$px0, x1q (18.10)

showing Pn ñ Pn`1 with the help of cn`1
“ c ¨ cn. Hereby we get (18.9) via Lemma 4.3.

Next we upgrade (18.9) into

@n, m P N : n § m ñ $pxn, xmq §
cn

´ cm

1 ´ c
$px0, x1q. (18.11)

We again prove this by induction, this time on m. Let Pm be the logical sentence that the
inequality holds for all n P N satisfying n § m. The base case P0 is checked immediately,
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because then the only non-trivial value is n “ 0 for which the distance on the left van-
ishes while the right-hand side is non-negative because cm

§ cn thanks to n § m. If Pm
is TRUE, then for any n § m (18.9) gives

$pxn, xm`1q § $pxn, xmq ` $pxm, xm`1q

§
cn

´ cm

1 ´ c
$px0, x1q ` cm$px0, x1q “

cn
´ cm`1

1 ´ c
$px0, x1q.

(18.12)

As for case n “ m ` 1 the clause Pm`1 holds trivially, we get Pm ñ Pm`1 and so (18.11) is
TRUE as stated by Lemma 4.3.

Dropping the cm term from the numerator of (18.11) shows

@n, m P N : n § m ñ $pxn, xmq §
$px1, x0q

1 ´ c
cn (18.13)

Lemma 14.7 then gives

@e ° 0 Dn0 P N @n • n0 :
$px1, x0q

1 ´ c
cn

† e (18.14)

proving that txnunPN is Cauchy. By the assumed completeness of pX, $q, there is x P X
such that xn Ñ x. Then

$
`
fpxq, x

˘
§ $

`
fpxq, xn`1

˘
` $px, xn`1q

“ $
`
fpxq, fpxnq

˘
` $px, xn`1q § c$px, xnq ` $px, xn`1q

(18.15)

and since both terms on the right tend to zero, we get $pfpxq, xq “ 0 implying fpxq “ x
as desired. The fixed point is unique because if x and y are both fixed points, then
$px, yq “ $pfpxq, fpyqq § c$px, yq which forces $px, yq “ 0 and thus x “ y. ⇤

Another name for Theorem 18.7 is Banach’s fixed point theorem. While we will not give
applications of the above theorem at this time, we note that Theorem 18.7 finds many
practical uses most of which, however, are phrased using terms (such as the space of
continuous functions) that we do not yet have the tools to discuss here.

Note also that the proof actually suggests an algorithm for constructing the fixed
point: Iterate the map successively starting from an arbitrary point. This is in fact how
this method is often used in practice; for instance, when constructing solutions of differ-
ential equations by way of so called Picard iterations.

18.2 Intrinsic closedness.

Let us now move to more abstract aspects of completness. As noted in Lemma 18.1,
completeness is somehow analogous to (sequential characterization of) closedness, al-
beit with convergent sequences replaced by Cauchy sequences. We will now expound
on this connection further. We need:

Definition 18.8 (Isometry) Let pX, $Xq and pY, $Yq be metric spaces. We say that the

map f : X Ñ Y is an isometry or an isometric embedding of X into Y if

@x, y P X : $Y
`
fpxq, fpyq

˘
“ $Xpx, yq. (18.16)

We will always assume that the isometry has full domain; i.e., Dompfq “ X.
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Thus, unlike contractions that shrink distances, isometries preserve them. The latter
property implies:

Lemma 18.9 Any isometry is automatically injective.

Proof. Let x, y P A and suppose that fpyq “ fpxq. Then (18.16) implies $Xpx, yq “ 0
which by the separation axiom for the metric gives x “ y. ⇤

Not all isometries are necessarily onto, of course. For instance, pR, $q with $px, yq :“
|x ´ y| embeds isometrically into pRd, $pq for any p P r1, 8s yet the embedding is not
surjective. We thus introduce another qualifier:

Definition 18.10 An isometric isomorphism (a.k.a. bijective isometry) is an isometry

which is onto.

Two spaces related by an isometric isomorphism are indistinguishable as far as their
metric properties are concerned. Relating two metric spaces by an isomorphism is thus
saying that they are basically the same. We now characterize complete metric spaces by
closedness of their isometric embedding in other complete spaces:

Theorem 18.11 (Intrinsic closedness of complete spaces) Let pX, $q be a metric space.
Then the following are equivalent:

(1) pX, $q is complete
(2) @pY, $1

q complete @f : X Ñ Y isometry : fpXq is closed in pY, $1
q

In words, a space is complete if and only if its embedding into any complete space is closed.

Proof of p1q ñ p2q. Assume that pX, $q and pY, $1
q are complete and let f : X Ñ Y be an

isometry. Consider a sequence tynunPN P fpXq
N such that yn Ñ y, for some y P Y. Then

there is txnunPN P XN such that fpxnq “ yn for each n P N. The assumed convergence
implies that tynunPN is Cauchy and, using that f is an isometry we readily check that
so is txnunPN. By completeness of pX, $q there exists x P X such that xn Ñ x. The
isometry property now shows that yn “ fpxnq Ñ fpxq. The uniqueness of the limit then
gives y “ fpxq, implying y P fpXq. By Theorem 16.5, fpXq is closed. ⇤

The term intrinsic has been used to emphasize that a complete space embeds isomet-
rically to any complete space (for which such an embedding exists) as a closed set. That
(1) and (2) are equivalent means that for incomplete spaces this fails for all isometric
embeddings (not just one).

The proof of the opposite implication is harder as it requires the introduction (and
construction of an instance) of the following concept:

Definition 18.12 (Completion) Let pX, $q be a metric space. A completion of X is any

metric space pX, $q such that

(1) pX, $q is complete, and

(2) Df : X Ñ X isometry such that fpXq “ X.

Here, in (2), the closure of fpXq is in the metric space pX, $q.

A few remarks are in order:
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‚ The notation X has, a priori, nothing to do with closure; it is just a notation for the
completion. However, in light of (2), it is in fact a sort of a closure as (2) says that
there is an embedding of X is which the closure of X is all of X.

‚ Condition (2) is a minimality condition. Indeed, we already noted that pQ, $q can be
embedded into pR, $q, which is complete and is in fact the closure of pQ, $q, but also
into pRd, $pq for any d • 1 and any p P r1, 8s. We would not want to regard the latter
spaces as the completion of pQ, $q.

‚ Using an earlier definition, condition in (2) means that fpXq is dense in X.
We now claim:

Theorem 18.13 For each metric space there is at least one completion.

Leaving the proof to the next subsection, we note that this is enough to give the proof of
the opposite implication in Theorem 18.11:
Proof of p2q ñ p1q in Theorem 18.11. Consider the complete space pY, $1

q :“ pX, $q and
let f be the isometric embedding of X into X. If fpXq is closed then fpXq “ X and f is
thus onto. Then X is isometric to a complete space and so it is thus complete. ⇤

18.3 Existence of a completion.

We now move to the proof of Theorem 18.13. The argument builds on Cantor’s 1878
proof of existence of a system reals which was based on the fact that one way to think of
a real number as a convergent sequence of rationals.

While such a representation is quite natural, a number of conceptual problems arise in
its rigorous implementation. The first one is that many sequences of rationals converge
to the same real number. We thus somehow need to find a way to identify the sequences
with the same limit as one. This will be done by grouping them into equivalence classes
under a suitable equivalence relation. Another problem is that, before the reals are actu-
ally constructed, some Cauchy sequences of rationals may not converge because there is
no limit point for them to converge to. Instead of convergent sequences, we should thus
rather focus on Cauchy sequences.

We now move to implementing this strategy in the context of a general metric space
pX, $q. We start with by grouping Cauchy sequences in equivalence classes. Given two
Cauchy sequences txnunPN, tynunPN P XN, we set

txnunPN „ tynunPN :“ lim
nÑ8 $pxn, ynq “ 0 (18.17)

We leave it to the reader to check that this is a reflexive, symmetric and transitive relation
on the set of Cauchy sequences, and thus is an equivalence relation. The equivalence
class of associated with a Cauchy sequence txnunPN P XN is then

“
txnunPN

‰
:“

!
tynunPN P XN : lim

nÑ8 $pxn, ynq “ 0
)

. (18.18)

We leave it to the reader to check the easy consequences of above definitions:

Lemma 18.14 For any Cauchy sequence txnunPN P XN,
(1) txnunPN P

“
txnunPN

‰
,

(2) @tynunPN P
“
txnunPN

‰
: tynunPN is Cauchy,
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(3) @tynunPN, tỹnunPN P
“
txnunPN

‰
: $pyn, ỹnq Ñ 0 and so

@tynunPN P
“
txnunPN

‰
:

“
tynunPN

‰
“

“
txnunPN

‰
(18.19)

With these in hand, we set

X :“
!

rtxnunPNs P XN : txnunPN Cauchy
)

. (18.20)

Our next goal is to define a metric on X. To this end, we recall a lemma based on an
exercise from homeowork:

Lemma 18.15 For any two Cauchy sequences txnunPN, tx̃nunPN P XN,

t$pxn, x̃nqunPN is Cauchy (18.21)

and so
lim

nÑ8 $pxn, x̃nq exists in R (18.22)

Moreover, for all tynunPN P
“
txnunPN

‰
and all tỹnunPN P

“
tx̃nunPN

‰
,

lim
nÑ8 $pyn, ỹnq “ lim

nÑ8 $pxn, x̃nq (18.23)

and so the limit depends only on the equivalence classes of the sequences.

Proof. In order to get (18.21), let n, m P N and note that
ˇ̌
$pxm, x̃mq ´ $pxn, x̃nq

ˇ̌
§ $pxm, xnq ` $px̃m, x̃nq (18.24)

Thanks to the Cauchy property of the sequences, given e ° 0 there is n0 P N such
that both terms on the right-hand side are smaller than e{2 once n, m • n0. It follows
that t$pxn, x̃nqunPN is Cauchy. The completeness of R proved in Theorem 17.2 then gives
(18.22). The argument for (18.23) is based on a similar inequality as (18.24) and observa-
tion (3) in Lemma 18.14 so we leave it to the reader. ⇤

We can now define $ : X ˆ X Ñ R by

$
`
rtxnunPNs, rtx̃nunPNs

˘
:“ lim

nÑ8 $pxn, x̃nq (18.25)

where, by (18.23), the limit is independent of the representatives. We then quickly check:

Lemma 18.16 $ is a metric on X.

Proof. The symmetry and non-negativity are immediate from the corresponding proper-
ties of $ and so is the triangle inequality. The definition (18.25) along with (18.18) ensure

$prtxnunPNs, rtx̃nunPNsq “ 0 ñ tx̃nunPN P rtxnunPNs (18.26)

and so rtxnunPNs “ rtx̃nunPNs by Lemma 18.14(3). ⇤
We are now ready to give:

Proof of Theorem 18.13. Let pX, $q be as above and let f : X Ñ X be defined by

fpxq :“ rtxunPNs (18.27)

where txunPN denotes the constant sequence whose all terms are equal to x. (This se-
quence is trivially Cauchy.) The proof now splits into three claims:
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Claim 1: f is an isometry. This is immediate from

$
`
rtxunPNs, rtx̃unPNs

˘
“ lim

nÑ8 $px, x̃q “ $px, x̃q. (18.28)

Claim 2: fpXq is dense in X: Pick any rtxnunPNs P X. Then

lim
mÑ8 $

`
fpxmq, rtxnunPNs

˘
“ lim

nÑ8 $pxm, xnq “ 0 (18.29)

where the last conclusion follows from the fact that txnunPN is Cauchy. This implies
fpxmq Ñ rtxnunPNs in pX, $q and so rtxnunPNs is an adherent point of fpXq. As this is
true for any rtxnunPNs P X, the closure of fpXq is all of X.

Claim 3: pX, $q is complete : Consider a sequence trtxpmq
n unPNsumPN (indexed by m) of

elements in X and assume that it is Cauchy in metric $. As fpXq is already known to be
dense in X, for each m P N there is ym P X such that

$
`
rtxpmq

n unPNs, fpymq
˘

§
1

m ` 1
(18.30)

where, we racall, fpymq is the equivalence class of Cauchy sequences represented by a
constant sequence equal to ym. Since f is an isometry, the triangle inequality and (18.30)
show

@m, k P N : $pym, ykq “ $
`
fpymq, fpykq

˘
§

1
m ` 1

`
1

k ` 1
(18.31)

and so tynunPN is Cauchy. This means that rtynunPNs is an element of X. Taking a limit
k Ñ 8 in (18.31) then shows

@m P N : $
`
fpymq, rtynunPNs

˘
§

1
m ` 1

. (18.32)

Combining (18.30) and (18.32) using the triangle inequality now shows

@m P N : $
`
rtxpmq

n unPNs, rtynunPNs
˘

§
2

m ` 1
(18.33)

and so rtxpmq
n unPNs Ñ rtynunPNs in pX, $q. This proves that pX, $q is complete. ⇤

We remark that parts of the above proof can indeed be used (as Cantor did in his paper
from 1878) to construct a system of reals out of a system of rationals. Indeed, specialize
to X :“ Q and $pa, bq :“ |a ´ b| (which takes rational values) and observe that the notion
of being Cauchy can be defined using rationals alone (see, e.g., Definition 14.3). Then
let R as the set of classes of equivalence of Cauchy sequences. The map (18.27) then
gives us an injection Q Ñ R. We now define the algebraic operations on R as follows

rtanunPNs ` rtbnunPNs :“ rtan ` bnunPNs

rtanunPNs ¨ rtbnunPNs :“ rtan ¨ bnunPNs
(18.34)

(which requires showing that tan ` bnunPN and tan ¨ bnunPN are Cauchy if tanunPN and
tbnunPN are). Along with 0 :“ t0unPN, 1 :“ t1unPN and the relation

rtanunPNs § rtbnunPNs :“ @k P N :
!

n P N : an § bn `
1

k ` 1

)
is infinite (18.35)
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we then check that pR, `, 0, ¨, 1, §q is an ordered field. A variant of the argument in
Claim 3 above then shows that this ordered field is in fact complete and is thus a system
of reals. (Of course, all arguments there have to be phrased using rationals only.)

18.4 Uniqueness of the completion.

As our final item we also address the uniqueness of the completion. Of course, this can
only be true modulo an isometric bijection:

Theorem 18.17 (Uniqueness up to an isomorphism) If pX1, $1q and pX2, $2q are two com-
pletions of a metric space pX, $q, then there is bijection y : X1 Ñ X2 which is an isometry.

Proof. The definition of a closure ensures existence of the isometries fi : X Ñ Xi, i “ 1, 2,
such that the closure of fipXq in Xi is all of Xi. By Lemma 18.9 these maps are injective
and so we may define y : f1pXq Ñ f2pXq by

ypxq :“ f2 ˝ f´1
1 pxq. (18.36)

Then the fact that both f1 and f2 are isometries imply, for all x, y P f1pXq,

$2
`
ypxq, ypyq

˘
“ $2

`
f2 ˝ f´1

1 pyq, f2 ˝ f´1
1 pxq

˘

“ $pf´1
1 pyq, f´1

pxq “ $1py, xq

(18.37)

and so y is an isometry of f1pXq onto f2pXq. Consider now any x P X1. Since the closure
of f1pXq is X1, Corollary 16.6 implies existence of txnunPN P f1pXq

N such that xn Ñ x.
Using that y is an isometry, we readily check the following facts:

x P f1pXq ñ ypxnq Ñ ypxq (18.38)

and if x R f1pXq, then ypxnq is convergent. We may thus define

ypxq :“ lim
nÑ8 ypxnq. (18.39)

A small technical caveat is that Corollary 16.6 requires a choice of the sequence conver-
gent to x. However, one can check that any sequence that converges to x will lead to the
same value of the limit of ypxnq.

Noting that y is defined on all of X1, all that remains to prove two claims:
Claim 1: y is an isometry. Note that if txnunPN, tx̃nunPN P f1pXq

N are such that xn Ñ x
and x̃n Ñ x̃, then the triangle inequality and the fact that y is an isometry on f1pXq

shows ˇ̌
ˇ$2

`
ypxq, ypx̃q

˘
´ $1px, x̃q

ˇ̌
ˇ § $2

`
ypxq, ypxnq

˘
` $2pypx̃nq, ypx̃q

˘
(18.40)

where the right-hand side tends to zero by (18.39). Hence we get

$2
`
ypxq, ypx̃q

˘
“ $1px, x̃q (18.41)

and so y is an isometry as desired.
Claim 2: y is onto. Let y P X2 and note that, since the closure of f2pXq is all of X2,
Corollary 16.6 ensures the existence of tynunPN Ñ f2pXq such that yn Ñ y. Since y is
onto f2pXq, for each n P N there is xn P X be such that ypxnq “ yn and the fact that y is
an isometry implies that txnunPN is Cauchy. As X1 is complete, there is x P X1 such that
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xn Ñ x. But the aforementioned independence of (18.39) on the sequence approaching x,
we have that ypxnq Ñ ypxq which implies y “ ypxq. The map y is thus onto. ⇤

The above can thus be considered as an variation on the proof of the existence and
uniqueness of the reals. However, unlike Dedekind’s approach, the advantage of the
metric-space based approach is its seamless extension to other contexts, and in particu-
lar, to linear vector spaces of infinite dimension. This is quite appreciated in the subject
of mathematics called functional analysis that deals with such spaces systematically.
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