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17. COMPLETENESS

Having discussed the connections between sequences and topology, we now turn back
to sequences alone and examine the following basic question: In what metric spaces do
all Cauchy sequences converge? We first answer this question for the reals endowed
with the Euclidean metric and then treat general metric spaces.

17.1 Completeness of the reals.

As noted earlier, a special name is reserved for the metric spaces for which the above
question is answered affirmatively:

Definition 17.1 (Completeness) We say that a metric space pX, $q is complete if every

Cauchy sequence is convergent, i.e., if

@txnunPN P XN : txnunPN Cauchy ñ Dx P X : xn Ñ x. (17.1)

If the space is not complete, then we say it is incomplete.

Note that our earlier use of the term “complete” concerned the validity of the least-
upper bound property in ordered fields. This is no loss in light of:

Theorem 17.2 The metric space pR, $q, where $px, yq :“ |x ´ y|, is complete.

The proof will require some facts about convergence of sequences which we will be
useful throughout the rest of the course. The first lemma works for all metric spaces and
is based on the following concept:

Definition 17.3 Let pX, $q be a metric space. A set A Ñ X is said to be bounded if it is

contained in an open ball, i.e.,

Dx P X Dr ° 0 : A Ñ Bpx, rq (17.2)

If a set is not bounded, then we call it unbounded.

We now observe:

Lemma 17.4 Let pX, $q be a metric space. Then

@txnunPN P XN : txnunPN Cauchy ñ txn : n P Nu bounded (17.3)

Proof. Let txnunPN P XN be a Cauchy sequence. Then (choosing e :“ 1 in Defini-
tion 14.12) there exists n0 P N such that

@n • n0 : $pxn, xn0q † 1 (17.4)

Fix any x P X. The triangle inequality then implies $px, xnq § $px, xn0q ` 1 for all n • n0
and so we have

@n P N : $px, xnq § max
 

$px, xkq : k P N ^ k § n0
(

` 1 (17.5)

Denoting the number on the right as r̃, we thus have @n P N : xn P Bpx, r̃ ` 1q, proving
(17.3) with r :“ r̃ ` 1. ⇤

Focusing now on sequences of reals, the next lemma calls upon the notions of “non-
decreasing” and “strictly increasing” sequences from Definition 14.2:
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Lemma 17.5 Let pA, §q be a totally ordered set. For each sequence txnunPN P AN there exists
a strictly increasing sequence tnkukPN P NN such that

@k P N : xnk § xnk`1 _ @k P N : xnk`1 † xnk (17.6)

In words, each sequence in a totally ordered set contains a subsequence that is either non-
decreasing or strictly decreasing.

Proof. Given txnunPN P AN let J :“ tn P N : p@j ° n : xj † xnqu, where we set a †

b :“ a § b ^ a ‰ b. If J is finite (empty or non-empty), then suppJq exists (and equals 0
when J “ H) and belongs to N. Then we recursively define

n0 :“ suppJq ` 1 ^ @k P N : nk`1 :“ inftj ° nk : xj • xnk u, (17.7)

where we note that nk • n0 by construction and so tj ° nk : xj • xnk u ‰ H by the fact
that nk R J as implied by nk • n0 ° suppJq. Since nk`1 belongs to the set under infimum,
we get xnk`1 • xnk for all k P N thus proving the first alternative in (17.6).

If on the other hand J is infinite, then we set

n0 :“ 0 ^ @k P N : nk`1 :“ inftj ° nk : xj † xnk u (17.8)

where the infimum exists and belongs to the set on the right by Lemma 9.7 because that
set is infinite for each k P N. This now readily gives nk`1 ° nk and xnk`1 † xnk for
all k P N, proving the second alternative in (17.6). ⇤

Next we call on another important fact about monotone sequences of reals:

Lemma 17.6 (Bounded monotone sequence of reals converge) Let txnunPN P RN be
non-decreasing and bounded from above, i.e.,

Dc P R @n P N : xn § xn`1 ^ xn § c (17.9)

Then txnunPN is convergent and, in fact,

lim
nÑ8 xn “ suptxn : n P Nu (17.10)

If txnunPN is instead non-increasing (and bounded), then limnÑ8 xn “ inftxk : k P Nu.

Proof. The assumptions (along with the least-upper bound property of R) ensure that
the supremum exists. Denote the supremum by c and let e P R obey e ° 0. Then c ´ e
is not an upper bound and so Dn0 P N : c ´ e † xn0 . But then the monotonicity claim in
(17.9) guarantees

@n • n0 : c ´ e † xn0 § xn § c † c ` e (17.11)

Noting that the extreme ends of these inequalities imply |xn ´ c| † e, we have verified
(14.5) for all e ° 0 and thus proved (17.10). ⇤

With the above lemmas in hand, we have proved a classical result discovered in 1817
by B. Bolzano in his proof of the Intermediate Value Theorem and flagged some 50 years
later by K. Weierstrass as a result of independent interest:

Theorem 17.7 (Bolzano-Weierstrass theorem) Every bounded sequence of reals contains a
convergent subsequence.
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Proof. Let txnunPN P RN be a bounded sequence. By Lemma 17.5, there exists strictly
increasing sequence tnkukPN P NN such that the subsequence txnk ukPN is monotone.
Being still bounded, this subsequence converges by Lemma 17.6. ⇤

With these in hand, we are ready to give:
Proof of Theorem 17.2. Let txnunPN P RN be a Cauchy sequence. The sequence is then
bounded by Lemma 17.4 and so it contains a convergent subsequence by Theorem 17.7.
To conclude the claim, we thus need:

Lemma 17.8 Let pX, $q be a metric space and txnunPN P XN a Cauchy sequence. If txnunPN

contains a convergent subsequence, then txnunPN is itself convergent.

The proof of this lemma is a homework exercise. ⇤
The above demonstrates that the completeness property of the reals as an ordered

field is essential for the completeness in the sense of metric spaces. The converse is
actually true as well:

Lemma 17.9 Let F be an ordered subfield of R which we regard as a metric space pF, $q for the
Euclidean metric $px, yq “ |x ´ y|. Then

pF, $q complete ô F has least upper bound property (17.12)

In particular, no proper ordered subfield of R is complete in the Euclidean metric.

Proof. For “” in (17.12), recall that every ordered field with least upper bound prop-
erty is isomorphic to the reals. That pR, $q is complete as a metric space was shown in
Theorem 17.2. The implication “ñ” is left to a homework exercise. ⇤
We remark that, in the previous lemma, the restriction to a subfield of the reals is neces-
sary for the metric to take values in R. (As noted in Section 10.5, there are ordered fields
larger than R but in these the absolute value is not generally R-valued.)

We also note that the arguments underpinning Theorem 17.2 depend crucially on the
choice of the metric. And, indeed, as noted earlier, all convergent sequences for the
reals with the Euclidean metric $ also converge in the metric $1 in (14.14), but the latter
also admits xn :“ n as a non-convergent Cauchy sequence. So while pR, $q is complete,
pR, $1

q is not. As noted in homework, this holds regardless of the fact that both metrics
induce the same topology.

17.2 Completeness of Euclidean spaces.

There are many complete metric spaces. For instance, Lemma 14.15 shows that every
discrete metric space is complete. Our interest is of course in metric space that are perti-
nent to analysis so our next step is the completeness of the Euclidean spaces.

Theorem 17.10 Let d • 1 be a natural and let $ be a norm-metric on Rd; i.e., $px, yq :“
}x ´ y} for } ¨ } a norm on Rd. Then pRd, $q is complete.

We start by a useful fact from linear algebra which is proved by analysis.

Proposition 17.11 Let d • 1 be a natural and let } ¨ } be a norm on on Rd. Then

Dc, C ° 0 @x P Rd : c}x}8 § }x} § C}x}8 (17.13)
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In short, all norms on Rd are comparable.

Proof. The upper bound in (17.13) is immediate: Writing x “ px1, . . . , xdq “
∞d

i“1 xkei,
where e1, . . . , ed are the coordinate vectors in Rd, the triangle inequality shows

}x} §

nÿ

i“1

|xi|}e1} §

´ nÿ

i“1

}ei}
¯

}x}8 (17.14)

so the upper bound in (17.13) holds with C :“
∞n

i“1 }ei}.
We will prove the lower bound with

c :“ inft}x} : x P Rd
^ }x}8 “ 1u (17.15)

where the infimum exists because the set of reals on the right-hand side is non-empty
and bounded below by zero. To give justice to the statement, we need to show that c ° 0
so let us assume for the sake of contradiction that c “ 0. Then there exists a sequence
txpnq

unPN P pRd
q

N with
`
@n P N : }xpnq

}8 “ 1
˘

^ }xpnq
} Ñ 0. (17.16)

Writing xpnq
“ pxpnq

1 , . . . , xpnq
d q, the condition }xpnq

}8 “ 1 shows that that the coordinate
sequences txpnq

i unPN are all bounded, i.e.,

@n P N @i “ 1, . . . , d : |xpnq
i | § 1. (17.17)

Invoking the Bolzano-Weierstrass theorem, there exists a strictly increasing subsequence

tnp1q
k ukPN such that txpnp1q

k q
i ukPN is convergent. By induction we then prove that, for

each m “ 2, . . . , d, there exists a strictly increasing sequence tnpmq
k ukPN which is a subse-

quence of tnpm´1q
k ukPN such that txpnpmq

k q
i ukPN is convergent for all i “ 1, . . . , m.

Now define n̂k :“ npdq
k . Then tn̂kukPN is strictly increasing and txpn̂kq

i ukPN is convergent
for each i “ 1, . . . , d. This means we can define

x̂i :“ lim
kÑ8

xpn̂kq
i (17.18)

and set x̂ :“ px̂1, . . . , x̂dq. We now readily check that

}xpn̂kq
´ x̂}8 “ max

 
|xpn̂kq

i ´ x̂i| : i “ 1, . . . , d
(

›Ñ
kÑ8

0 (17.19)

which in light of (17.14) implies

}xpn̂kq
´ x̂} ›Ñ

kÑ8
0. (17.20)

But the triangle inequality for the 8-norm shows

}xpn̂kq
}8 ´ }xpn̂kq

´ x̂}8 § }x̂}8 § }xpn̂kq
}8 ` }xpn̂kq

´ x̂}8 (17.21)

which via (17.17) and (17.19) yields }x̂}8 “ 1, and a similar argument for } ¨ } gives

}xpn̂kq
} ´ }xpn̂kq

´ x̂} § }x̂} § }xpn̂kq
} ` }xpn̂kq

´ x̂} (17.22)

implying }x̂} “ 0 by (17.17) and (17.20). This is the desired contradiction because }x̂} “ 0
forces x̂ “ 0 while }x̂}8 “ 1 gives x ‰ 0.
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Having proved that c ° 0 we now note that, since for any x ‰ 0, the vector z :“ 1
}x}8 x

obeys }z}8 “ 1, we have

@x P Rd r t0u : }x} “ }x}8
›››

1
}x}8

x
››› • c}x}8. (17.23)

proving the lower bound in (17.13). (For x “ 0 this bound holds trivially.) ⇤
As part of the previous proof, we have established the following facts:

Corollary 17.12 All norm-metrics on Rd have the same Cauchy sequences and the same con-
vergent sequences.

Proof. That a sequence that is Cauchy (or convergent) in } ¨ }-metric is Cauchy (or con-
vergent) in } ¨ }8-metric and vice versa follows directly from (17.13). ⇤

Corollary 17.13 A sequence in Rd converges in any norm metric if and only if each coordinate
thereof converges in the reals endowed with the Euclidean norm.

Proof. The above proof shows this for the } ¨ }8-metric; the extension to other norm metric
then comes from (17.13). ⇤

This now readily gives:
Proof of Theorem 17.10. If txnunPN P pRd

q
N is Cauchy in a norm metric $, then it is

Cauchy in } ¨ }8-metric by Corollary 17.12. The argument following (17.19) then shows
that the coordinate sequences are Cauchy in the reals endowed with the Euclidean met-
ric. By Theorem 17.2, the coordinates converge and, by Corollaries 17.12 and 17.13, so
does txnunPN in pRd, $q. ⇤

We also record another fact proved above:

Corollary 17.14 (Bolzano-Weierstrass theorem in Rd) Every bounded sequence in Rd en-
dowed with a norm-metric contains a convergent subsequence.

Proof. This follows from Corollary 17.13 and Theorem 17.7. ⇤
We emphasize that all of the above developments apply solely to norm-metrics; just

as for the metric $1 on R not being complete, it is easy to come up with a metric $2 on Rd

that is not complete.
Another remark concerns the proof of Proposition 17.11. A reader might wonder how

come that, when the upper bound is proved by essentially algebraic means, the lower
bound requires so much analysis. To see that this is necessary, observe that if instead
of R2 we work in the vector space Q2 over the field Q, then

@x “ px1, x2q P Q2 : }x} :“ |x1 ` x2
?

2| (17.24)

actually defines a norm. (This hinges on the fact that there are no rationals a, b P Q such
that a ` b

?

2 “ 0.) Yet c in (17.15) vanishes and the lower bound in (17.13) fails for this
norm because there exists a sequence tbnunPN P QN such that |bn| † 1 and bn Ñ 1{

?

2
for which xn :“ p1, bnq obeys }xn} Ñ 0 while }xn}8 “ 1. The comparability of the norms
is thus tied to the completeness of R and Rd for all d • 1.
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We also note that while the conclusion of Proposition 17.11 extends to all finite-dimen-
sional vector spaces (as these are isomorphic with Rd for d being their dimension), the
conclusion fails in infinite-dimensional generalizations thereof.
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