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16. SEQUENCES AND POINT-SET TOPOLOGY

The previous section defines a number of concepts having to do with the topology (i.e.,
study of open and closed sets) in a metric space. We will now link these to the notion
based on open balls in the underlying metric, and then also to convergent sequences.

16.1 Point classification.

We being by introducing a classification of points relative to a given set:

Definition 16.1 Let A Ñ X and x P X. We say that x is

‚ an adherent point of A if @r ° 0 : Bpx, rq X A ‰ H,

‚ a boundary point of A if @r ° 0 : Bpx, rq X A ‰ H ^ Bpx, rq X pX r Aq ‰ H,

‚ an interior point of A if Dr ° 0 : Bpx, rq Ñ A,

‚ an exterior point of A if Dr ° 0 : Bpx, rq X A “ H.

‚ a limit point of A if @r ° 0 : pBpx, rq X Aq r txu ‰ H,

‚ an isolated point of A if Dr ° 0 : Bpx, rq X A “ txu.

As it turns out, most of these are just different words for notions we already intro-
duced using the notions from topology:

Lemma 16.2 Let A Ñ X. Then
(1) tx P X : adherent point of Au “ A,
(2) tx P X : boundary point of Au “ BA,
(3) tx P X : interior point of Au “ intpAq,
(4) tx P X : exterior point of Au “ extpAq :“ intpX r Aq “ X r A.

Moreover,
A “ tx P X : limit point of Au Y tx P X : isolated point of Au (16.1)

where the two sets in the union are disjoint.

Proof. (1) Let x be an adherent point of A and let C be a closed set with A Ñ C. Then
x R X r C for otherwise, by the fact that X r C is open, there would be r ° 0 with
Bpx, rq Ñ X r C implying Bpx, rq X A Ñ Bpx, rq X C “ H, a contradiction with x being
adherent. Taking C :“ A we get x P A, proving

tx P X : adherent point of Au Ñ A. (16.2)

For the other inclusion, denote

O :“ X r tx P X : adherent point of Au. (16.3)

Then for every x P O, there is r ° 0 such that Bpx, rq X A “ H (otherwise x would be
adherent). Since Bpx, rq is open, every point therein is separated by an open ball from A
and so Bpx, rq contains no adherent points of A. This means that Bpx, rq Ñ O and so O is
open. Thus

tx P X : adherent point of Au is closed. (16.4)

The fact that x P Bpx, rq for all r ° 0 shows that all the points in A are automatically
adherent, and so we get A Ñ tx P X : adherent point of Au. Since the closure of A is the
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smallest closed set containing A, this yields

A Ñ tx P X : adherent point of Au (16.5)

Along with (16.2), this proves (1).
(2) By inspecting the definition of a boundary and adherent point, we readily check

that a point is a boundary point if and only if it is adherent to A and to X r A. Using (1)
we thus get

tx P X : boundary point of Au “ A X X r A (16.6)

The claim now follows from (15.24).
(3-4) The definition of an interior point readily implies that

tx P X : interior point of Au “ X r tx P X : adherent point of X r Au (16.7)

As intpAq “ X r X r A by (15.23), the claim (3) follows from (1). The claim (4) is (3)
applied to the complement of A.

It remains to prove (16.1). Note that, for all x, we have

@r ° 0 : Bpx, rq X A ‰ H

ô
`
Dr ° 0 : Bpx, rq X A “ txu

˘

_

´`
@r ° 0 : Bpx, rq X A ‰ H

˘
^ 

`
Dr ° 0 : Bpx, rq X A “ txu

˘¯ (16.8)

Using rules for negation of quantified clauses, the last line can be converted to

@r ° 0 :
`
Bpx, rq X A ‰ H ^ Bpx, rq X A ‰ txu

˘
(16.9)

This is equivalent to @r ° 0 : pBpx, rq r txuq X A ‰ H, thus proving the claim. The fact
that the decomposition in (16.1) is into disjoint sets is checked similarly. ⇤

It is clear from the definition that an isolated point of A always belongs to A. How-
ever, the last argument in the previous proofs allows us to characterize isolated and
limits points further:

Lemma 16.3 For all A Ñ X,

@x P A :
`
Dr ° 0 : A X Bpx, rq non-empty finite

˘
ô x is isolated point of A (16.10)

In particular,

@x P X : x is a limit point of A ô @r ° 0 : A X Bpx, rq is infinite (16.11)

In short, each open ball centered at a limit point of A contains infinitely many points of A.

Proof. Let x P A. If A X Bpx, rq is finite for some r ° 0, then there is n P N and a
bijection f : r0, nq Ñ A. Denote @k P r0, nq : xk :“ f pkq and set r1 :“ r if n “ 0 and
r1 :“ mintrpx, xkq : k P r0, nq ^ xk ‰ xu if n ° 0. Then, as is readily checked, A X Bpx, r1

q “

txu and so x is an isolated point. The converse direction follows immediately from the
definition of an isolated point. ⇤

Corollary 16.4 If A Ñ X is finite, then all points of A are isolated.

Preliminary version (subject to change anytime!) Typeset: March 9, 2023



MATH 131AH notes 80

Proof. Since singletons are closed and finite unions of closed sets are closed, if A is finite
then it is closed. In particular, all points of A are adherent. Thanks to finiteness of A, the
characterization (16.11) rules out limit points, so by (16.1), all points of A are isolated.
(One can also prove this directly by setting r :“ mint$px, yq : x, y P A ^ x ‰ yu and
noting that then @x P A : A X Bpx, rq “ txu.) ⇤

16.2 Sequential characterization of closedness.

Let us check out a few examples demonstrating the above notions. In all of these we
take X :“ R with $ being the Euclidean metric.

‚ A :“ t
1

n`1 : n P Nu. Here each point of A is isolated but A “ A Y t0u and 0 is a limit
point of A. Every point of A lies in BA and intpAq “ H.

‚ A :“ tp´1q
n n

n`1 : n P Nu. Here, again, each point of A is isolated and A “ A Y

t`1, ´1u and the points `1 and ´1 are limit points.
‚ A :“ t

1
n`1 `

?
2

m`1 : n, m P N ^ n § mu. Here t
1

n`1 : n P Nu Y t0u are all the limit
points while the remaining points of A are isolated.

‚ A :“ tn
?

2 mod 1 : n P Nu. Here A Ñ r0, 1s and A “ r0, 1s. Every point of r0, 1s is a
limit point of A. Still intpAq “ H.

We leave the proofs of the above claims to the reader.
Notice that in the examples we often relied on convergence of sequences from the set.

As it turns out, this gives us another way to think of closed sets and closures:

Theorem 16.5 (AC) Let pX, $q be a metric space. Then for all A Ñ X:

A is closed ô

´
@txnunPN P AN

@x P X : xn Ñ x ñ x P A
¯

(16.12)

In words, a set A Ñ X is closed if and only if all convergent sequences from A have a limit in A.

Proof. Let us start with the proof of ñ. Suppose A Ñ X is closed and let txnunPN be a
sequence from A such that xn Ñ x. If x R A then x lies in X r A which is open and so
there is r ° 0 such that Bpx, rq X A “ H. But xn Ñ x means that xn P Bpx, rq when n is
sufficiently large in contradiction with xn P A. Summarizing, x R A implies  pxn Ñ xq

which is equivalent to xn Ñ x ñ x P A, proving ñ in (16.12).
Let us now consider the implication  which we will again prove by proving the

contrapositive. Suppose A is NOT closed. Then X r A is NOT open and so

Dx P X r A @r ° 0 : Bpx, rq X A ‰ H. (16.13)

This means that there exists x R A that is adherent to A. Specializing (16.13) to r in the
set t2´n : n P Nu, the Axiom of Choice yields

°

nPN

A X
`
Bpx, 2´n

q r txuq ‰ H (16.14)

meaning that there exists f : N Ñ A with @n P N : f pnq P Bpx, 2´n
q r txu. Setting

xn :“ f pnq, we have rpx, xnq † 2´n and so xn Ñ x. Summarizing, assuming that A is
NOT closed we showed that there exists an A-valued sequence txnunPN and x P X such
that xn Ñ x ^ px P Aq. This proves in (16.12) as desired. ⇤
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We used “AC” in the label of the theorem to mark that the proof required the Axiom
of Choice. This is necessary when no additional structure is assumed about pX, $q and A.
However, in most spaces that we encounter in practice (e.g., when X is separable, see
Definition 16.7 below) the choice of xn can be performed constructively and then the
Axiom of Choice is no longer required.

Corollary 16.6 (AC)(Density of a set in its closure) Let A Ñ X. Then

@x P X : x P A ô DtxnunPN P AN : xn Ñ x. (16.15)

Proof. For ñ use that, by Lemma 16.2, A is the set of adherent points and apply the
argument after (16.13). For  note that if xn Ñ x for some txnunPN P AN, then x is an
adherent point of A and so x P A, again by Lemma 16.2. ⇤

The reason why we used the word “density” to label the property in Corollary 16.6
arises from:

Definition 16.7 We say that a set B Ñ X is dense in A Ñ X if A Ñ B.

Thus we also get:

Corollary 16.8 (AC) Let A, B Ñ X. Then B is dense in A if and only if for each x P A there
exists a B-valued sequence txnunPN such that xn Ñ x.

Typically, we will apply this to A “ X or B Ñ A (or both). A standard example
of a dense subset of R (with the Euclidean metric) is Q, although R r Q does as well.
However, the former set demonstrates an important property of the reals:

Definition 16.9 (Separability) We say that a metric space pX, $q is separable if it con-

tains a countable dense set, i.e., if

DA Ñ X : A countable ^ A “ X. (16.16)

(This is one example where we do allow a finite A to be regarded as countable.)

The reals are thus separable. A homework exercise asks to show that the same applies to
d-dimensional Euclidean spaces Rd under any norm metric. This extends even to some,
but not all, infinite-dimensional generalizations thereof. (Note that R endowed with the
discrete metric is definitely not separable.)

16.3 Relative notions.

Given a metric space pX, $q, associated with each (non-empty) Y Ñ X is a natural metric
space pY, $Yq where $Y is simply the restriction of $ to pairs of points from Y. We call $y
the induced metric. Now define the following relative topological concepts:

Definition 16.10 (Relative open/closed set) Let Y Ñ X be as above. We say that A Ñ Y
is relatively open if A is open in pY, $Yq, and relatively closed if A is closed in pY, $Yq.

In order to give an example, consider the following setting: X :“ R endowed with
the standard Euclidean metric, Y :“ Q. Then A :“ r

?

2,
?

3s X Q is relatively closed
and relatively open in Q while it is neither open nor closed in R. Same applies to the
set A :“ p

?

2,
?

3s X Q as well as to A :“ p

?

2,
?

3q X Q. This (of course) has to do with
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the fact that
?

2,
?

3 R Q; indeed, the set A :“ r0, 1q X Q is neither relatively open nor
relatively closed while A :“ r0,

?

2q X Q is relatively closed but not relatively open.
Another example to consider is Y :“ r0, 2q. Then A :“ r0, 1q is relatively open and

A :“ r1, 2q is relatively closed. These facts can be verified directly or by invoking the
following general characterization of relatively open and closed sets:

Theorem 16.11 Let pX, $q be a metric space and let Y Ñ X be nonempty. Then

@A Ñ Y : A relatively open ô

´
DO Ñ X : O open ^ A “ O X Y

¯
(16.17)

Similarly, we get

@A Ñ Y : A relatively closed ô

´
DC Ñ X : C closed ^ A “ C X Y

¯
(16.18)

In short, a set is relatively open/closed if and only if it is a restriction of an open/closed set.

Proof. For the purpose of this proof, let BYpx, rq :“ ty P Y : $px, yq † ru denote the open
ball pY, $Yq and let BXpx, rq :“ ty P X : $px, yq † ru be the open ball in pX, $q. Note that

@x P Y @r ° 0 : BYpx, rq “ Y X BXpx, rq (16.19)

as is directly checked from the definition.
Let us start with “ñ” in (16.17). If A Ñ Y is a relatively open set, then it is open in

pY, $Yq which means that

@x P A Drx ° 0 : BYpx, rxq Ñ A. (16.20)

(This rx can be picked constructively; e.g., as rx :“ 1
2 suptr P p0, 1s : Bpx, rq Ñ Au.) Set

O :“
§

xPA
BXpx, rxq. (16.21)

Since BXpx, rxq is open in pX, $q (see Lemma 15.4) and the union of a family of open sets
is open, we have

O is open in pX, $q. (16.22)

Since x P BXpx, rxq, we have A Ñ O and so

A Ñ O X Y. (16.23)

For the opposite inclusion note

O X Y “

§

xPA
BXpx, rxq X Y “

§

xPA
BYpx, rxq Ñ A (16.24)

where we used (16.1) and then (16.20) at the very end. Combining (16.23) and (16.24) we
get “ñ” in (16.17).

In order to prove “” in (16.17), let O Ñ X be open with A “ O X Y. Then for
each x P A we have x P O and so there is r ° 0 such that BXpx, rq Ñ O. But then (16.19)
shows BYpx, rq “ BXpx, rq X Y Ñ O X Y “ A proving that A is relatiely open.

The proof of (16.18) is handled by complementation. Indeed,

A relatively closed ô Y r A relatively open. (16.25)
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By (5.1) the statement on the right-hand side is equivalent to the existence of O Ñ X
open in pX, $q such that Y r A “ O X Y. But that is in turn equivalent to

A “ Y r pO X Yq “ Y X pX rOq (16.26)

which is the right-hand side of (16.18) because X rO is closed in pX, $q. ⇤
We finish by noting that in topology, the relative notions are defined by the right-hand

sides of (5.1–16.18). The relative topology on Y is then the projection of the topology
on X by way of intersecting all sets by Y.
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