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15. BASIC TOPOLOGY

Having discussed the notion of Cauchy and convergent sequences, we now turn to the
following natural questions:

‚ In what metric spaces or subsets thereof do all Cauchy sequences have a limit?
‚ What sets in a given metric space contain the limit of all convergent sequences

contained therein.
‚ In what sets or spaces do sequences admit convergent subsequences.

These questions will ultimately be answered by the words complete, closed and compact,
respectively. Here we develop the necessarily tools starting with metric spaces and then
move to their generalizations using notions from topology.

15.1 Open balls and open sets.

We start with the basic definition:

Definition 15.1 (Open ball) Let pX, $q be a metric space. Given an x P X and a real

number r ° 0, the open ball Bpx, rq of radius r ° 0 centered at x P X is the set

Bpx, rq :“
 

y P X : $px, yq † r
(

. (15.1)

Note that we have x P Bpx, rq for all r ° 0. We do not consider open balls for radii r § 0
as these are empty and thus not very interesting.

Before we start using the notion of open ball, it is instructive to check what the open
balls look like in some of the basic examples of the metric spaces:

‚ discrete metric: As the metric takes only values 0 and 1, here we get

Bpx, rq “

#
txu, if 0 † r § 1,
X, if r ° 1.

(15.2)

In short, the ball is either a single point (namely, the center) or the whole space.
‚ The real line: Using the Euclidean metric $px, yq :“ |x ´ y|, we have

Bpx, rq “ px ´ r, x ` rq (15.3)

so Euclidean balls in R are simply open intervals. The same is true for the metric $1

from (14.14) although there the interval is no longer centered at x and no longer of
(Euclidean) length 2r (verify this precisely!).

‚ Euclidean space: Consider the normed space pRd, } ¨ }pq for p P r1, 8s and denote by
Bppx, rq the open ball in Rd with respect to the norm-metric $p derived from } ¨ }p;
see (14.18) and (14.20). For p “ 2, B2px, rq is the usual, perfectly round, Euclidean
ball. However, when p “ 8, we have

B8px, rq “

d°

i“1

pxi ´ r, xi ` rq (15.4)

meaning that the ball in the $8-metric is an open cube centered at x. (In this sense the
8-metric is a more natural extension of (14.13) because, just as Rd is the Cartesian
product of R’s, the 8-ball in Rd is the Cartesian product of (15.3).
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For p “ 1 the ball B1px, rq takes a shape of a diamond centered at x. As p increases
above 1, the corners of the diamond become rounded to become the Euclidean ball
at p “ 2. As p increases further, the p-ball gradually morphs to a cube.

With the notion of the open ball in hand, we now put forward:

Definition 15.2 (Open and closed sets) Let pX, $q be a metric space. A set A Ñ X is said

to be open if

@x P A Dr ° 0 : Bpx, rq Ñ A, (15.5)

i.e., if along with every point the set contains an open ball centered at that point. A set

A Ñ X is said to be closed if X r A is open.

We remark that that latter already introduces closed sets using the method typical for
topology. The text book uses a definition based on the concept of a limit point which we
will show to be equivalent in the next section.

Here are some basic examples:

Lemma 15.3 Every singleton is closed, i.e., @x P X : txu is closed.

Proof. This is equivalent to saying that, @x P X : X r txu is open. To prove that, let y P

X r txu. Since y ‰ x, we have $px, yq ° 0 so if we let r :“ $px, yq, then r ° 0. But
then $px, yq “ r and so x R Bpy, rq meaning that Bpy, rq Ñ X r txu. As this is true for
every y P X r txu, the set X r txu is open and its complement txu is closed. ⇤

Lemma 15.4 Every open ball is open, i.e., @x P X @r ° 0 : Bpx, rq is open.

Proof. This is small variation on the previous proof. Let y P Bpx, rq. Then $px, yq † r and
so e :“ r ´ $px, yq ° 0. Let z P Bpy, eq. The triangle inequality then implies

$px, zq § $px, yq ` $py, zq

† $px, yq ` e “ $px, yq ` rr ´ $px, yqs “ r
(15.6)

and so z P Bpx, rq. It follows that Bpy, eq Ñ Bpx, rq and so Bpx, rq is open. ⇤

Lemma 15.5 Let $ be a discrete metric on X. Then every subset of X is open and closed.

Proof. Let A Ñ X be arbitrary. Then for all x P A we have Bpx, 1{2q “ txu Ñ A by (15.2)
and so A is open. As this holds for all A Ñ X, we get that X r A is open and so A is also
closed, as claimed. ⇤

The example of the discrete metric may be misleading it that it might make the reader
believe that most (or even all) sets are either open or closed. But this is far from the
truth in general; indeed, being open or closed is a very special property and most sets
in general metric space are neither open nor closed. For instance, the interval p0, 1s is
neither open nor closed in R with respect to the usual metric. So, please beware that

A is NOT open œ A is closed (15.7)

and
A is open œ A is NOT closed (15.8)
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In other words, the notions of open and closed sets are neither exhaustive (as other sets
than these may exist) nor exclusive (as there could be sets that are both open and closed).

Lemma 15.4 naturally guides us to:

Definition 15.6 Let pX, $q be a metric space. Given x P X and r P R with r • 0, the set

ty P X : $py, xq § ru (15.9)

is called the closed ball of radius r centered at x.

As shown in the homework exercise, a closed ball is indeed closed, justifying its name.

15.2 Topology.

We will now characterize the open sets in a metric space as follows:

Lemma 15.7 Let pX, $q be a metric space and set T :“ tO Ñ X : openu. Then
(1) H, X P T
(2) @A Ñ T :

î
A P T

(3) @A Ñ T : A finite ñ
ì

A P T
In words, the set of open sets in a metric space pX, $q contains H and X and is closed under
arbitrary unions and finite intersections.

Proof. (1) Since H contains no points, it is trivially open (there is no x for which it would
have to contain an open ball centered at x). Similarly, X is open as it by definition con-
tains all open balls.

(2) Let A be a collection of open sets and let x P
î

A. Then there is O P A such that
x P O. But O is open and so there is an r ° 0 such that Bpx, rq Ñ O. It follows that

Bpx, rq Ñ O Ñ

§
A (15.10)

and so
î

A is open.
(3) Let A Ñ T be finite. This means that there is n P N and a map that assigns each

natural k “ 0, . . . , n to a set Ok P A such that A “ tOk : k “ 0, . . . , nu. If x P
ì

A then
for each k “ 0, . . . , n we have x P Ok and, since Ok is open, there is rk ° 0 such that
Bpx, rkq Ñ Ok. Now set

r :“ min
k§n

rk (15.11)

and note that, being the minimum of a finite number of positive reals, r ° 0. As r § rk,
this shows

@k “ 0, . . . , n : Bpx, rq Ñ Bpx, rkq Ñ Ok. (15.12)

But then Bpx, rq Ñ
ìn

k“0 Ok “
ì

A and so
ì

A is open. ⇤
The properties of open sets in the previous lemma can be abstractized as:

Definition 15.8 (Topology) Let X be a set. A collection T Ñ PpXq is said to be a topol-
ogy on X if H, X P T and T is closed under arbitrary unions and finite intersections.

When a topology T is given, we refer to sets in T as open and, in accord with our
earlier definition, call complements of open sets closed. The closed sets then obey:
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Lemma 15.9 The set of closed sets corresponding to a topology on X contains H and X and is
closed under arbitrary intersections and finite unions.

Proof. With the help of de Morgan law

@A Ñ PpXq : X r
£

A “

§
tX r C : C P Au (15.13)

this follows directly from the corresponding properties of open sets. ⇤
Every non-empty set X supports two topologies: first, the coarsest topology tH, Xu

and the finest or discrete topology PpXq. The name of the latter arises from the fact that
this topology comes from a metric — namely, the discrete metric, thanks to Lemma 15.5
— and is thus metrizable. The coarsest topology does not come from a metric unless X is
a singleton. (This is because all singletons are closed in every metric space.)

We now introduce the following concepts:

Definition 15.10 (Interior and closure) Let A Ñ X. The interior of A is then the set

intpAq :“
§ 

O Ñ X : open ^ O Ñ A
(

, (15.14)

namely, the union of all open sets contained in A. The closure of A is then the set

A :“
£ 

C Ñ X : closed ^ A Ñ C
(

, (15.15)

namely, the intersections of all closed sets containing A.

Note that each A Ñ X contains at least one open set (namely, H) and is contained in
at least one closed set (namely, X). Lemmas 15.5-15.9 then readily show

@A Ñ X : intpAq is open ^ A is closed. (15.16)

We remark that other notations may be encountered in the literature for the interior
(e.g., A˝) and the closure (e.g., cl(A)). In addition, we have the following facts:

Lemma 15.11 For each A Ñ X,
(1) intpAq Ñ A Ñ A,
(2) A is open ô A “ intpAq,
(3) A is closed ô A “ A.

Proof. (1) is the consequence of (15.14) and (15.15). In light of (15.16) we only have to
prove ñ in (2-3). But this again follows from (15.14) and (15.15): if A is open, then A is
part of the collection in (15.14) and so A Ñ intpAq. By (1) we get A “ intpAq, proving ñ

in (2). If A is in turn closed, then A belongs to the collection in (15.15) and so A Ñ A.
By (1) we then get A “ A, proving ñ in (3). ⇤

The interior of A is thus the largest open set contained in A while the closure of A is
the smallest closed set containing A. Specializing to balls in a metric space pX, $q, for
all x P X and r • 0 we thus have

Bpx, rq Ñ ty P X : $px, yq § ru (15.17)

meaning that the closure of the open ball is contained in the closed ball. The inequality
is strict when r “ 0 in general but there are metrics in which the inclusion can be strict
even for r ° 0!
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Part (1) of Lemma 15.11 leads to another very natural concept:

Definition 15.12 (Topological boundary) For each A Ñ X, the set

BA :“ A r intpAq (15.18)

is the (topological) boundary of A.

Note that writing
A r intpAq “ A X pX r intpAqq (15.19)

shows that
@A Ñ X : BA is closed. (15.20)

Also note that while A may not be disjoint from BA, we always have

intpAq X BA “ H. (15.21)

An intuitive image of the boundary of A is the “curve or surface enclosing A” but this
is true only for nice subsets of the Euclidean space. For instance, the boundary of the
set can be the set itself (e.g., for N regarded as a subset of R with the Euclidean metric
we have BN “ N) or even much larger than that (e.g., for Q Ñ R where BQ “ R).
The boundary can also be empty, e.g., for the finest topology (which, as argued above,
corresponds to the discrete metric of X) we have BA “ 0 for each A Ñ X.

Some additional properties of interior and closure are stated in:

Lemma 15.13 For each A, B Ñ X:

A Ñ B ñ intpAq Ñ intpBq ^ A Ñ B. (15.22)

Moreover, for each A Ñ X,

X r intpAq “ X r A ^ X r A “ intpX r Aq. (15.23)

In particular, we have
BA “ A X X r A “ BpX r Aq. (15.24)

We leave the proof of this lemma to an exercise. There is (quite naturally) no relation
between the boundaries BA and BB whether A is a subset of B or not.

Describing the whole class of open sets in a given metric space is usually hard if not
impossible. One example where it can be done is the real line with the usual metric:

Theorem 15.14 Consider the metric space pR, dq where $px, yq :“ |x ´ y|. Then

@A Ñ R : A open ô

$
’’’’’&

’’’’’%

DtIn : n P Nu Ñ PpRq :
@n P N : In “ H _ In “ open interval
@m, n P N : In X Im ‰ H ñ m “ n

A “

§

nPN

In

(15.25)

In words, every open set in R is a finite or countable union of disjoint open intervals.

We leave the proof of this theorem to homework. The statement is very special to the
one-dimensional Euclidean space. The open sets in Rd for d • 2 are much harder to
characterize.
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It is easy to check that any subset of R that is open for the Euclidean metric is open
for the metric (14.14), and vice versa. This is not too surprising in itself until we realize
that, as shown in a homework exercise, these two metrics have different sets of Cauchy
sequences. It follows that, while the topological point of view of metric spaces is useful
in many ways, it is not good for studying the relation between Cauchy and convergent
sequences. In particular, the notion of completeness to be introduced later is tied to the
metric structure rather than topology.
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