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14. METRIC SPACE CONVERGENCE

We are ready at last to commence the discussion of topics that should be familiar from
calculus (which can be thought of as a non-technical, or practical-use oriented, version
of analysis). We start with limits of sequences.

14.1 Convergence of real-valued sequences.

The concept of convergence is fundamental for analysis. We will first discuss it in the con-
text of convergence of sequences. Recall that the notion of a sequence was introduced
already in Definition 12.8 where we defined an A-valued sequence txnunPN to be a func-
tion N Ñ A with Domp f q “ N whose value at n is xn. We will largely suppress this
technical interpretation in what follows and think of a sequence intuitively as a line-up
of objects indexed by the naturals.

Consider the following example of a sequence tanunPN taking values in rationals
which is defined recursively as

a0 :“ 1 ^ @n P N : an`1 :“ 3 ´
1
an

(14.1)

It is easy to evaluate a couple of first terms,

a0 “ 1, a1 “ 2, a3 “ 2.5, a4 “ 2.6, a5 “ 2.615 . . . (14.2)

It appears that the values rise with the rising index, albeit not above the value 3. And,
indeed, we easily prove:

Lemma 14.1 @n P N : 1 § an § 3 ^ an † an`1

Proof. Let Pn :“ 1 § an § 3 ^ an † an`1. Noting that 1 “ a0 † a1 “ 2 § 3 we get that P0
is TRUE. Assuming Pn, we have 1

an`1
†

1
an

and so

an`2 “ 3 ´
1

an`1
† 3 ´

1
an

“ an`1 (14.3)

Since 1
an

• 0, last equality also gives an`1 § 3 (in fact, as 1
an

•
1
3 we even have an`1 §

2.666 . . . ) while the fact that an • 1 implies 1 § an § an`1. Hence Pn ñ Pn`1 and so the
claim holds by induction. ⇤

We have thus verified that tanunPN conforms to:

Definition 14.2 Let pA, §q be a partially ordered set. An sequence txnunPN taking val-

ues in A is then said to be

‚ non-decreasing if @n P N : xn § xn`1 and strictly increasing if @n P N : xn † xn`1
‚ non-increasing if @n P N : xn`1 § xn and strictly decreasing if @n P N : xn`1 † xn

Such sequences are generally referred to as monotone.

We remark that the words increasing, resp., decreasing are used as colloquial equivalents
of non-decreasing, resp., non-increasing, but the uncertainty which of “§” or “†” is
meant makes them less desirable when precision is of concern.
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Another observation that may be gleaned from (14.2) is that the values of the sequence
are getting closer and closer together, and perhaps even approach a “limit” point. Here
are the precise definitions of these intuitive terms:

Definition 14.3 (Cauchy sequence in R) A real-valued sequence txnunPN is said to be

Cauchy if

@k P N Dn0 P N @m, n P N : n, m • n0 ñ |xm ´ xn| †
1

k ` 1
(14.4)

Definition 14.4 (Limit of R-valued sequence) An real-valued sequence txnunPN is said

to have a limit, or converges, if

DL P R @k P N Dn0 P N @m, n P N : n • n0 ñ |xn ´ L| †
1

k ` 1
(14.5)

Any such L is then called a limit of txnunPN. We abbreviate (14.5) as xn Ñ L.

Indeed, we readily prove:

Lemma 14.5 The sequence tanunPN from (14.1) is Cauchy.

Proof. Let n P N. A calculation shows

an`2 ´ an`1 “

´
3 ´

1
an`1

¯
´

´
3 ´

1
an

¯
“

1
an

´
1

an`1
“

an`1 ´ an

anan`1
(14.6)

Taking absolute values and noting that an • 1 but an`1 • a1 “ 2 gives

|an`2 ´ an`1| §
|an`1 ´ an|

anan`1
§

1
2

|an`1 ´ an| (14.7)

We then use induction to verify that, for all n P N,

|an`1 ´ an| § 2´n
|a1 ´ a0| “ 2´n (14.8)

and then, for all m, n • N,
|am ´ an| § 2´N`1 (14.9)

Since the right-hand side is decreasing in N, it then suffices to show that, for each k P N

there is N P N such that 2´N`1
§

1
k`1 . Since @n P N : n ` 1 § 2n as verified again by

induction, it suffices to choose N :“ k ` 1. ⇤
A very similar argument also gives:

Lemma 14.6 The sequence tanunPN from (14.1) is convergent with limit L :“ 1`
?

5
2 .

Proof. We start by explaining where the precise value of L comes from. If we already
know that the sequence is convergent, both an and an`1 are close to L for all n large.
Replacing these values by L in the recursive formula produces the equation L “ 3 ´

1
L .

This is a quadratic equation whose only positive solution is 1`
?

5
2 .

We now convert this argument to a proof that L is a limit of tanunPN. Suppose that L
satisfies L “ 3 ´

1
L . Then

L ´ an`1 “

´
3 ´

1
L

¯
´

´
3 ´

1
an

¯
“

1
an

´
1
L

“
L ´ an

anL
(14.10)
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Taking absolute value and using that L •
3
2 gives that

|L ´ an`1| §
2
3

|L ´ an| (14.11)

Assume that L • 3{2. Then we again readily prove by induction that, for all n P N,

|L ´ an| §

´2
3

¯n
|L ´ a0| §

´2
3

¯n
|L ´ 1| (14.12)

where we also used that L § 2. In order to complete the proof, we need a lemma whose
proof (based on Archimedean principle) we leave to the reader:

Lemma 14.7 @x, y P R : x, y ° 0 ^ x † 1 ñ Dn P N : xn
† y

Indeed, given any k P N and setting y :“ 1
k`1 |L ´ 1|

´1 and x :“ 2
3 , this lemma gives us

n0 P N such that the right-hand side of (14.12) is less than 1
k`1 for all n • n0. ⇤

Some remarks are in order. First, note that while tanunPN is Q-valued, the limit L is
not rational. It thus follows that the sequence is Cauchy even as as Q-valued sequence,
but it is not convergent in Q. This is because being Cauchy is an intrinsic property of
the sequence while being convergent depends also on the ambient space in which the
sequence is immersed. We will return to this question more systematically later.

Second, the above procedure for controlling limit behavior of recursively defined se-
quences works quite generally. Indeed, if f : R Ñ R is a given function, we can define
the sequence by @n P N : an`1 :“ f panq starting from the initial value a0. The limit L, if
such exist, will typically be a solution to the equation L “ f pLq, meaning that L is a fixed
point of f . An example of this for f pxq :“ 1

1`x appears as a homework exercise.

14.2 Metric spaces.

Having digested the above notions in the context of real-valued sequences, we now turn
to their generalizations beyond the reals. Here we note that what made Definitions 14.3
and 14.4 work was that in R we have a natural notion of closeness. Indeed, we say that x
and y are close if |x ´ y| is small. We thus put forward:

Definition 14.8 (Metric space) A metric space is a pair pX, $q, where X is a set and

$ : X ˆ X Ñ R is a function that obeys:

(1) (positivity) @x, y P X : $px, yq • 0 ^ p$px, yq “ 0 ô x “ yq

(2) (symmetry) @x, y P X : $px, yq “ $py, xq

(3) (triangle inequality) @x, y, z P X : $px, yq § $px, zq ` $pz, xq

We call any such $ a metric on X.

The triangle inequality expresses the intuitive fact that the passage from x to y via z will
be at least as long as the shortest possible way. Metric thus axiomatizes the intuitive
notion of distance, with both words used synonymously in practice.

Using the definition of absolute value it is fairly easy to check that

$px, yq :“ |x ´ y| (14.13)
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defines a metric on R (and also on any subset thereof; in particular, on Q). However, as
asked to show in the homework, also

$1
px, yq :“

ˇ̌
ˇ

x
1 ` |x|

´
y

1 ` |y|

ˇ̌
ˇ (14.14)

is a metric on R.
The metric (14.13) finds a number of possible generalizations in Rd. Arguably the

most natural of these is the Euclidean metric which, for points x “ px1, . . . , xdq and y “

py1, . . . , ydq is given by

$2px, yq :“
´ dÿ

i“1

pxi ´ yiq
2
¯1{2

(14.15)

This is linked to the one-dimensional case by the fact that $2px, yq is the length of a
straight line segment between x and y as measured by the metric (14.13).

However, the Euclidean metric is not the only metric on Rd that is linked to (14.13).
One other such metric is the 8-metric

$8px, yq :“ max
i“1,...,d

|xi ´ yi| (14.16)

which correspond to the largest difference of the coordinates of the two points. Here the
triangle inequality is verified by noting that, for all x, y, z P Rd and i “ 1, . . . , d,

|xi ´ yi| § |xi ´ zi| ` |zi ´ yi| § $px, zq ` $pz, yq (14.17)

This metric is sometimes called the chessboard distance, because it corresponds to the
minimal number of moves a king needs to get from one point to another on a chessboard.

The metrics $2 and $8 happen to be special instances from a whole one-parameter
family of p-metrics on Rd. These are indexed by a real-valued parameter p P r1, 8s and,
for p finite, they are given by

$ppx, yq :“
´ dÿ

i“1

|xi ´ yi|
p
¯1{p

(14.18)

To see that the 8-metric belongs to this family, we check that $ppx, yq converges to $8px, yq

as p Ñ 8. (This requires concepts we have not yet talked about in detail.) The p “ 1 case
is sometimes referred to as the Manhattan distance, or taxicab distance, as it corresponds
to total distance traveled via a square grid.

In order to prove that $p are actually metrics (for p P r1, 8s) we use the fact that $p
actually arises from a norm. The latter is a concept defined for all vector spaces:

Definition 14.9 (Norm) Given a vector space V over a field F such that F “ R _ F “ C,

a function } ¨ } : V Ñ R is a norm if it satisfies the following requirements:

(1) (positivity) @u P V : 0 § }u} ^ p}u} “ 0 ô u “ 0q

(2) (homogeneity) @u P V @l P F : }lu} “ |l|}u}

(3) (triangle inequality) @u, v P V : }u ` v} § }u} ` }v}.

A vector space V endowed with a norm } ¨ } is called a normed space.

We then check:
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Lemma 14.10 Let } ¨ } be a norm on vector space V. Then $ : V ˆ V Ñ R defined by

$px, yq :“ }x ´ y} (14.19)

is a metric on V.

Proof. The positivity of $ follows from the positivity of } ¨ } while homogeneity of the
latter implies symmetry via }x ´ y} “ }p´1qpy ´ xq} “ }y ´ x}. The triangle inequality
for the norm along with the rewrite x ´ y “ px ´ zq ` pz ´ yq then gives the triangle
inequality for $. ⇤

Noting that $ppx, yq “ }x ´ y}p, for } ¨ }p defined as in the next claim, all we just need
to prove:

Proposition 14.11 (p-norms on Rd) Let d P N be such that d • 1 and p P R obey p • 1.
For x “ px1, . . . , xdq P Rd let

}x}p :“
´ dÿ

i“1

|xi|
p
¯1{p

(14.20)

Then } ¨ }p is a norm on Rd.

We will not give a proof but only comment that its most difficult part (the triangle in-
equality) is deduced from the so called Minkowski inequality which is itself proved by
way of the Hölder inequality. When p “ 2, the latter reduces to the Cauchy-Schwarz in-
equality which can be proved easily without much calculus.

As our last example of a metric we introduce the concept of discrete metric which is
defined for any non-empty set A by

$px, yq :“

#
0, if x “ y,
1, if x ‰ y,

(14.21)

This metric is not very useful in practice but is very good for theory building as it pro-
vides an easy test case for various facts about metric spaces.

14.3 Sequences in metric spaces.

We are now ready to go back to sequences taking values in a metric space and generalize
the notions introduced in Definitions 14.3–14.4 as

Definition 14.12 (Cauchy and convergent sequences) Let pX, $q be a metric space. We

say that an X-valued sequence txnunPN in is

‚ Cauchy if @e ° 0 Dn0 • 0 @n, m • n0 : $pxn, xmq † e
‚ convergent if Dz P X @e ° 0 Dn0 • 0 @n • n0 : $pxn, zq † e

We call any such z a limit of txnunPN and write xn Ñ z in this case.

We now observe a couple of general facts:

Lemma 14.13 (Uniqueness of the limit) Any sequence has at most one limit. More precisely,
for any metric space pX, $q and any X-valued sequence txnunPN,

@z, z̃ P X : xn Ñ z ^ xn Ñ z̃ ñ z “ z̃ (14.22)
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Proof. Let txnunPN be a sequence in a metric space pX, $q and z, z̃ P X be such that xn Ñ z
and xn Ñ z̃. Assuming z ‰ z̃, we have e :“ 1

2 $pz, z̃q ° 0. Then, by xn Ñ z, there is n0
be such that $pxn, zq † e for n • n0 and, by xn Ñ z̃ there is ñ0 such that $pxn, z̃q † e
for n • ñ0. Taking n :“ maxtn0, ñ0u we then have

$pz, z̃q § $pxn, zq ` $pxn, z̃q † e ` e “ 2e “ $pz, z̃q (14.23)

which (due to “†”) is impossible. Hence $pz, z̃q “ 0 and thus z “ z̃ as claimed. ⇤
The notation limnÑ8 xn is often used to denote the (unique) limit of the sequence

txnunPN. Note that the existence of the limit is implicit in this notation — we would not
write this if the limit did not exist.

The two notions from Definition 14.12 are closely related:

Lemma 14.14 (Convergent implies Cauchy) If xn Ñ x then txnunPN is Cauchy.

Proof. Fix e ° 0 and let n0 P N be such that for all n • n0 we have $pxn, xq † e{2. By the
triangle inequality we then get

@m, n • n0 : $pxm, xnq § $pxm, xq ` $px, xnq † e{2 ` e{2 “ e. (14.24)

This yields (2.4) and so txnunPN is Cauchy. ⇤
For spaces with discrete metric we get even a full characterization of convergent and

Cauchy sequences:

Lemma 14.15 (Cauchy/convergent sequences in discrete metric) Consider any set X en-
dowed with the discrete metric $. Then for any sequence txnunPN of points in X,

txnunPN is Cauchy ô Dn P N @m • n : xm “ xn. (14.25)

Every Cauchy sequence is thus eventually constant and all Cauchy sequences converge.

Proof. Since $ takes values 0 and 1, letting e :“ 1{2 in (2.4) forces $pxn, xmq “ 0 once
m, n • n0. The positivity axiom for d then shows that xn “ xm for all m, n • n0. Eventu-
ally constant sequences are always convergent. ⇤

The last example is of course very special; the notion of being Cauchy is actually
weaker than being convergent. As shown in a homework exercise, both notions depend
on which metric we consider. Indeed, the R-valued sequence xn :“ n is not Cauchy
under the Euclidean metric (14.13) but it is Cauchy yet not convergent under the metric
(14.14). We will spend considerable time discussing these aspects further.

As our final note, we observe that while the sequence xn :“ p´1q
n is neither conver-

gent nor even Cauchy, restricting to even numbered indices gives us a constant, and thus
convergent sequence. This naturally leads to:

Definition 14.16 Given a sequence txnunPN its subsequence is any sequence of the form

txnk ukPN where tnkukPN is a strictly increasing sequence taking values in N.

Informally, a subsequence arises via a selection of some values in the line-up of the whole
sequence. This selection is usually driven by the desire to refine possible behaviors as
the index becomes large. The following lemma was left to homework:
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Lemma 14.17 Let txnunPN be a Cauchy sequence. If txnunPN admits a convergent subse-
quence, xnk Ñ z, then txnunPN is convergent and xn Ñ z.

It follows that a non-convergent Cauchy sequence admits no convergent subsequence.
A similar criterion for convergent sequences is given in:

Lemma 14.18 (Characterization of convergent sequences) Let txnunPN be a sequence in a
metric space pX, $q. Then the following are equivalent:

(1) txnunPN is convergent,
(2) there exists z P X such that every subsequence of txnunPN contains a subsequence that

converges to z.

We leave the proof of this equivalence, which helps decide whether an abstract notion
of convergence can possibly arise from a metric, to the reader.
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