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13. UNCOUNTABLE SETS AND BEYOND

The notion of countability would not be very useful if all sets were finite or countable.
That this is not the case is the content of:

Theorem 13.1 (Cantor 1891) t0, 1u
N is uncountable.

Proof. Recall that t0, 1u
N is the set of all functions f : N Ñ t0, 1u with Domp f q “ N.

Suppose for the sake of contradiction that t0, 1u
N is countable. Hence there is a bijec-

tion f : N Ñ t0, 1u
N. Denoting fn :“ fpnq, the set t0, 1u

N is thus enumerated into the
sequence t fnunPN. Now define h : N Ñ t0, 1u by

@k P N : hpkq :“ 1 ´ fkpkq (13.1)

Then h P t0, 1u
N with Domphq “ N yet h is distinct from each fk (as it differs from fk

at k). No bijection f as above exists and so t0, 1u
N is uncountable. ⇤

The idea to arrange elements into a two-dimensional array and then produce another
element by picking or changing the diagonal terms is often referred to as the Cantor
diagonal argument. The above statement plus a bit of arithmetic shows:

Corollary 13.2 The interval r0, 1s :“ tx P R : 0 § x § 1u and thus also R are uncountable.

Proof. The proof uses the notion of infinite series that we have not covered systematically.
However, all we need is the following definition:

Definition 13.3 For any I ‰ H and any txa : a P Iu Ñ r0, 8q :“ tx P R : 0 § xu, if there

is C P r0, 8q such that

@F Ñ I : F finite ñ

ÿ

aPF
xa § C (13.2)

we set ÿ

aPI
xa :“ sup

!ÿ

aPF
xa : F Ñ I finite

)
(13.3)

(The supremum exists by the least upper bound property of the reals.)

Now pick s P t0, 1u
N and note that (11.5) gives p1 ´ qq

∞n
k“0 qk

“ 1 ´ qn`1 for all q P R

and all n P N. This shows

0 §
nÿ

k“0

2sk

3k`1 §
2
3

nÿ

k“0

3´k
“

2
3

1 ´ 3´n`1

1 ´ 3´1 § 1 (13.4)

Hence we can set
f psq :“

ÿ

kPN

2sk

3k`1 (13.5)

in the sense of Definition 13.3. This gives us a map f : t0, 1u
N

Ñ r0, 1s.

Remark 13.4 Note that f psq is the real number whose representation in base-3 expansion
takes the from 0.h1h2h3 . . . , where hi :“ 2si´1. In particular, Ranp f q is the set of all such
numbers that can be written using 0’s and 2’s only, with no 1’s allowed. Restricting
to such numbers removes the degeneracy that all these expansions suffer from (e.g.,
0.02222222 . . . is the same number as 0.10000000 . . . ) which would ruin injectivity of the
map; see below. We will return to this later when we discuss Cantor’s ternary set.
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Next let s, s1
P t0, 1u

N be such that sk “ s1
k for all k “ 0, . . . , n ´ 1 and sn “ 0 while

s1
n “ 1. Then the fact that suppb ` Aq “ b ` suppAq for b ` A :“ tb ` a : a P Au whenever

suppAq exists shows

f psq “

n´1ÿ

k“0

2sk

3k`1 `

ÿ

kPrn`1,8q

2sk

3k`1

§

n´1ÿ

k“0

2sk

3k`1 `
1

3n`1

†

n´1ÿ

k“0

2sk

3k`1 `
2

3n`1 “

nÿ

k“0

2s1
k

3k`1 § f ps1
q

(13.6)

thus showing that f is injective. If r0, 1s or R were countable, then Lemma 12.7 would
imply that the image f pt0, 1u

N
q is countable. But f is a bijection of t0, 1u

N onto its image,
so that would give that t0, 1u

N is countable, in contradiction with Theorem 13.1. ⇤
The take-away message here is that there are just many more reals than rationals.

From Theorem 13.1 and Lemma 12.14 we also conclude:

Corollary 13.5 There exists a real which is not algebraic.

In fact, the argument shows most reals are not algebraic. Non-algebraic real or complex
numbers are sometimes called transcendental.

We note that, prior to Cantor, Corollary 13.5 was proved by Liouville using the con-
cept of Liouville numbers which are those x P R such that for each n P N there is a rational
of the form p{q with q ° 1 for which 0 † |x ´ p{q| † q´n. As it turns out, such numbers
exist and are all transcendental.

Cantor continued to develop the notion of cardinality further to include even larger
sets than reals. We already encountered his relation » of equinumerosity in Definition 3.11
defined for any two sets A and B bz

A » B :“ D f : A Ñ B bijection (13.7)

This is readily checked to be an equivalence relation on sets (technically, we have to talk
about the class of all sets at this point or restrict to subsets of a given set). However,
unlike for finite sets, we then define the cardinality of A somewhat differently:

Definition 13.6 For any set A, the cardinality of A is the equivalence class rAs under

the equinumerosity relation.

Thus, the cardinality of the interval r0, nq :“ tk P N : k † nu includes all sets with
exactly n elements. By Lemma 12.7, all infinite countable sets lie in rNs which (by The-
orem 13.1 and Corollary 13.2) includes neither t0, 1u

N nor R. As each s P t0, 1u
N is in

one-to-one correspondence with the subset A :“ tn P N : spnq “ 1u of the naturals, also
PpNq is uncountable and so

PpNq R rNs (13.8)

Another profound discovery made by Cantor is that this holds for all sets:
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Theorem 13.7 (Cantor 1891) For any set A, there is no surjection f : A Ñ PpAq and so

rAs ‰
“
PpAq

‰
(13.9)

Proof. The proof is based on a variation of the Cantor diagonal argument albeit in the
form that is more reminiscent of Russell’s antinomy (see Theorem 2.1). Indeed, assume
let f : A Ñ PpAq be a surjection. Define

B :“
 

x P A : x R f pxq
(

(13.10)

Then B P PpAq and, since f is a surjection, there is b P A such that f pbq “ B. But then
b P B implies b R f pbq “ B while b R B “ f pbq implies b P B. As at least one of b P B or
b R B must be TRUE — remember that b R B is a shorthand for  pb P Bq — we arrive at
a contradiction and so no such f can exist after all. ⇤

Theorem 13.7 shows that applying the powerset to a given set keeps producing sets of
different cardinality. Intuitively, PpAq is larger than A but to formulate that precisely, we
need a tool to compare sizes of non-equinumerous sets. This is furnished by the binary
relation À of size comparison defined as

A À B :“ D f : A Ñ B injection (13.11)

This relation has many reasonable properties. Indeed, using the identity map we imme-
diately verify the intuitive fact

A Ñ B ñ A À B (13.12)

The relation À is also readily checked to be reflexive and transitive, but is not an ordering
as antisymmetry cannot hold in general. Indeed, A À B and B À A do not imply
that A equals B as these could be different sets (take A :“ N and B :“ Q, for instance).
However, the following natural alternative to equality does hold:

Theorem 13.8 (Cantor-Bernstein/Schröder-Bernstein) Let A and B be sets. Then

A À B ^ B À A ñ A » B (13.13)

In particular, À is a partial order on equinumerosity classes.

We will not discuss the proof which can be found in all basic texts of set theory. What
matters for us is that, in order to prove equinumerosity of two sets, it suffices to demon-
strate an injection from one to the other and vice versa.

To see how this works in practice, note that the proof of Corollary 13.2 demonstrated
an injection t0, 1u

N
Ñ r0, 1s. From PpNq » t0, 1u

N and r0, 1s Ñ R we get PpNq À R.
On the other hand, lifting the bijection between N and Q to their power sets shows
PpNq » PpQq while the concept of Dedekind cut gives an injective embedding of R

into PpQq thus proving R À PpNq. Theorem 13.8 then concludes

PpNq » t0, 1u
N

» r0, 1s » p0, 1q » R (13.14)

A special name is reserved for the equivalence class of all these sets:

Definition 13.9 The equivalence class of R under equinumerosity relation is called the

continuum. Any set in rRs is said to have cardinality of the continuum.
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Similar arguments as used above in fact show that

R ˆ R À R (13.15)

and so, using also the trivial embedding R À R ˆ R, Theorem 13.8 and induction give

@n P N : n • 1 ñ Rn
» R (13.16)

meaning that all Euclidean spaces are of cardinality of the continuum. (We leave details
to homework exercise.)

Pushing this further, the fact that R » t0, 1u
N and N ˆ N » N imply

RN
» t0, 1u

NˆN
» t0, 1u

N
» R (13.17)

so even the space of all real-valued sequences is of cardinality of the continuum. How-
ever, by Theorem 13.7, the space RR of all functions R Ñ R and, by N ˆ R » R (prove
this!), also the space of just zero-one valued functions on R are strictly larger:

R Ä PpRq » t0, 1u
R

» t0, 1u
NˆR

» RR (13.18)

where we used
A Ä B :“ A À B ^ pA » Bq (13.19)

We again leave checking the details to the reader.
An attentive reader will notice that the various “orders of infinity” encountered above

(namely, the naturals N, the reals R in (13.14) and R-valued functions on R in (13.18))
can be constructed from N by powerset operation. This suggests that we push this
further: Using Theorem 13.7 along with the natural injection x fiÑ txu of every set in its
power set demonstrates an infinite sequence

N Ä PpNq » R Ä PpPpNqq Ä PpPpNqq Ä P
`
PpPpNqq

˘
Ä . . . (13.20)

of infinite sets with distinct cardinalities. A natural question is whether other “orders
of infinity” might exist as well. An immediate answer to this is in the affirmative: The
union of the infinite sequence above (which is defined precisely via the Recursion prin-
ciple) is not equinumerous to any member thereof. We have thus discovered yet another
way (besides powerset) to produce “set larger than before” by taking the union of an
infinite family of all “previous” infinities. (A formal construction requires the notion of
a limit ordinal.)

That being said, more important for analysis (which is concerned mostly with the
first two or three terms in the above sequence) is the question whether other “orders
of infinity” are missing because the powerset construction “jumped” over them. This
already concerns the first and second term and is the basis of:

Continuum hypothesis: (Cantor 1878) Every infinite subset of the reals is either countable or
of cardinality of the continuum. In short,

@A Ñ R : A infinite ñ
`

A » N _ A » R
˘

(13.21)

This “hypothesis” has been a subject of much debate in the first half of the 20th century
for it seemed to have demonstrable consequences for what could/could not be done in
mathematics. A striking resolution was presented by K. Gödel in 1940 and P. Cohen in
1963 who showed that the Continuum hypothesis can be neither disproved (Gödel) nor
proved (Cohen) in Zermelo’s theory (assuming the latter is free of contradictions). In
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other words, adding the Continuum hypothesis to Zermelo’s axioms creates one math-
ematical universe, adding its negation creates another and yet another universe is pro-
duced by leaving the TRUE/FALSE value of (13.21) undecided.

For this reason, just as with the Axiom of choice, mathematicians are careful to re-
gard results that rely on the Continuum hypothesis as conditional on this axiom to be
added and often mark that by adding the acronym “CH” to the statement of the theorem.
(“AC” is used to mark the use of the Axiom of choice.)
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